Parameter identification of minimal realizations

David Passeri
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Passeri, David, "Parameter identification of minimal realizations " (1972). Retrospective Theses and Dissertations. 5224.
https://lib.dr.iastate.edu/rtd/5224

INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. ${ }^{\text {Y }}$ You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms

72-19,998
PASSERI, David Paul, 1940-
PARAMETER IDENTIFICATION OF MINIMAL REALIZATIONS.
Iowa State University, Ph.D., 1972
Engineering, electrical

University Microfilms, A XEROX Company , Ann Arbor, Michigan

Parameter identification of minimal realizations

by

David Passeri

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved:

Signature was redacted for privacy.
In Charge of Major Work

Signature was redacted for privacy.
For the Major Department

Signature was redacted for privacy.
For the Graduate College

Iowa State University Ames, Iowa

1972

PLEASE NOTE:

Some pages may have indistinct print. Filmed as received.

University Microfilms, A Xerox Education Company

TABLE OF CONTENTS

Page
1.0. INTRODUCTION 1
2.0. STRUCIURE OF LINEAR SYSTEMS 4
2.1. External and Internal Descriptions 4
2.2. Minimal Realizations 6
2.3. Minimal Realizations and Parameter Identification 12
2.4. Cyclic Spaces and Cyclic Systems 14
3.0. A PARAMETER IDENTIFICATION ALGORITHM 19
3.1. External Description Via the Internal De:scription 19
3.2. A Canonical Form For Single Input/Single Output 23 Systems
3.3. A Canonical Form For Multiple Input/Multiple 24 Output Systems
3.4. Identification From Noisy Input/Output Observations 30
4.0. APPLICATION OF THE PARAMETER IDENTIFICATION AIGORITHM 35
4.1. Identification of the Longitudinal Equations of 35 Motion of an Aircraft
4.2. Identification of the Lateral Equations of 44 Motion of an Aircraft
5.0. CONCLUSIONS 73
6.0. LITERATURE CITED 75
7.0. ACKNOWLEDGMENTS 78
8.0. APPENDIX 79

1.0. INTRODUCTION

Since an accurate mathematical model is essential to any system design involving optimization or state estimation, the need to be able to correctly specify a germane mathematical model is well established. Formulation of a mathematical model can be divided into two broad categories, the situation in which there is no a priori information about the system structure so that the topology of the model must be defined and the case in which partial information is available that describes the system. In both cases complete specification of the model requires estimation of the unknown model parameters through use of experimental data. The most general mathematical model that in practice would represent most physical systems would be a nonlinear time varying multiple input/multiple output model. However, in many cases linearizied model can be used to approximate the physical system resulting in a simpler mathematical model for which the majority of modern control system theory has been developed. Consequently the brunt of recent research has concentrated on the formulation of linear nontime varying multiple input/multiple output models.

Two elegant solutions to the specification of a multiple input/ multiple output mathematical model in which no a priori information is available have been proposed in recent years. The first is due to B. C. Ho (1) in 1965. Given the impulse response of a system Ho's algorithm generates a minimal realization of a system. The second method first proposed by Gopinath (2) and later extended by Budin (3)
requires only knowledge of input/output observations in order to specify a minimal realization.

This document concerns itself with the second case, that in which partial information is available that describes the system and where the parameters that make up the mathematical model are to be estimated. A considerable amount of previous work has been accomplished in this area and an exhaustive literature search can be found in reference (4).

Parameter estimation of single input/single output systems has been the subject of many papers in recent years. The techniques used range from stochastic approximation to model reference. Steiglitz and McBride(5) propose a model reference scheme that identifies the linear system by minimizing the error between system and model. Saridis and Stein (6), Sakrison (7), and Holmes (8) all use stochastic approximation algorithms for determining the system model. Neal and Bekey (9) have investigated parameter estimation of sampled-data systems by stochastic approximation. Wong and Polak (10) have applied the instrumental variable method used in economics for on-line system identification. Approximation of the impluse response of a pulse-transfer function by linear combinations of orthonormal sequences has been proposed by Tretter (11). These techniques all suffer in that they cannot be easily extended to the multiple input/multiple output system.

Augmentation of the Kalman-Bucy filter (12) in which the unknown system parameters are included as state elements has been attempted by Kopp and Orford (13), however results using this method have not
been favorable. Denery (14) considers the problem of identifying a multiple-output/single input system by using a gradient algorithm that combines the equation error method and the output error method. The above methods are suitable for multiple input/multiple output systems yet present computational difficulties.

This dissertation presents criteria that specify necessary requirements for parameter identification of multiple input/multiple output systems. A canonical form for multiple input/multiple output systems is proposed, along with the necessary transformation matrix, that is suitable for use in the identification algorithm used in this document. The identification algorithm is an on-line algorithm that estimates system parameters directly from noisy input/output observations, the only requirement being that the noise covariances be known. Computation is straight forward requiring only simple matrix operations.

Application of the identification algorithm has been made to estimating parameters in both the longitudinal and lateral equations of motion of an aircraft under simulated flight conditions.

2.0. STRUCTURE OF LINEAR SYSTEMS

2.1. External and Internal Descriptions

The structure of linear dynamical systems has been a popular subject for many years. The older literature on control theory described linear systems by means of transfer functions, e.g., the Laplace transforms of the differential equations relating the inputs to the outputs. Formalization of the mathematical definition of a linear dynamical system was first made by Kalman (15) in 1963. Recent endeavors, Kalman (16, 17, 18), Wymore (19), and Zeiger (20) have been centered in defining a dynamical system as an algebraic structure; the most elegant description being due to Kalman who describes a linear dynamical system \sum as having a module structure。

This dissertation will discuss the structure of a linear system from the viewpoint of a K-vector-space structure. In defining the structure of a dynamical system the discussion will be limited only to systems that are: discrete-time, linear, constant, having a finite number of inputs and outputs, and constructed with numbers from a fixed field K. Definitions of the terminology used in discussing K-vector spaces can be found in reference (21).

Definition 2.1:

A discrete-time, constant, linear, r-input, p-output dynamical system Σ over a field K is a composite concept $\Sigma=(F, G, H)$ where

$$
\begin{array}{ll}
\mathrm{F}: & X \rightarrow X \\
\mathrm{G}: & \mathrm{K}^{\mathrm{r}} \rightarrow \mathrm{X} \\
\mathrm{H}: & X \rightarrow \mathrm{~K}^{\mathrm{P}}
\end{array}
$$

are abstract K-homomorphisms and X is an abstract vector space K^{n} (the state space). The triple (F,G,H) defines the internal description of a system via the equations

$$
\begin{align*}
x(k+1) & =F x(k)+G u(k) \\
y(k) & =H x(k) \tag{2.1}
\end{align*}
$$

where $k \in Z^{+}=\{0,1,2, \ldots\}, x \in X, u(k) \in K^{r}, y(k) \in K^{p}$. Here F, G, H are $n \times n, n \times r, p \times n$ matrices over the field K. The dimension of the system, $\operatorname{dim} \Sigma$, is defined as the $\operatorname{dim} \mathrm{X}$.

Definition 2.2:

The external description of the system Σ is described by the K-linear input/output map $f, f: \Omega \rightarrow \Gamma$, where $\Omega=\{u(0), u(1), \ldots\}$ and $\Gamma=\{y(1), y(2), \ldots\}$ vector spaces over a field K. The map f has the following properties:
a) f is defined as the zero-state impulsive response map $\left\{\mathrm{HF}^{\mathbf{i}}{ }^{\mathbf{G}} ; \mathbf{i}=0,1, \ldots\right\}$. Given an arbitrary input sequence the output sequence is, ($\mathrm{HGu}(0), \sum_{t=0}^{1} \mathrm{HF}^{1-\mathrm{t}} \mathrm{Gu}(\mathrm{t}), \sum_{\mathrm{t}=0}^{2} \mathrm{HF}^{2-\mathrm{t}} \mathrm{Gu}(\mathrm{t}) \ldots$)
b) the map f is invariant under time translation in the sense that the diagram depicted below

commutes with respect to the shift operators σ_{Ω} and σ_{Γ} defined as

$$
\begin{aligned}
& \sigma_{\Omega}:(u(0), u(1), \ldots .) \rightarrow(u(1), u(2), \ldots .) \\
& \sigma_{\Gamma}:(y(0), y(1), \ldots) \rightarrow(y(1), y(2), \ldots)
\end{aligned}
$$

Note that the external description has the property of causality. The external description of a system can be related to the internal description through the concept of a realization.

2.2. Minimal Realizations

A linear dynamical system Σ defined by Equation 2.1 is called a realization of an input/output map $£$ defined by Definition 2.2 if the input/output map f_{Σ} of Σ is equal to f. Definition 2.3:

Let Ω and Γ be arbitrary K-vector spaces and $£: \Omega \rightarrow \Gamma$ an arbitrary K-homomorphism. We say that f is factored through a vector space X iff there exist a commutative diagram

where g is a surjective K-homomorphism and h an injective K-homomorphism. Such a factorization is called a realization.

Having an external description of the system Σ one would like to deduce the internal description in terms of the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$). In order to do so, some additional structure must be placed on the abstract vector space X; that is, given the K-homomorphism f what requirements
need be placed on the state space X such that a factorization of f is possible via X .

Since the mapping g is required to be onto, every $x \in X$ is the image of at least one $w \in \Omega$. This is precisely the requirement that the system Σ be completely reachable. Recall that a system is completely reachable iff

$$
\begin{equation*}
\rho\left[G, F G, \cdots, F^{n-r} G\right]=n=\operatorname{dim} X \tag{2.3}
\end{equation*}
$$

where $r=\rho[G]=\operatorname{rank}[G]$.
Similarly the requirement that the map h be $1-1$ is equivalent to saying that the system Σ be completely observable. That is,

$$
\begin{equation*}
\rho\left[H^{T}, F^{T} H^{T}, \cdots,\left(F^{T}\right)^{n-p} H^{T}\right]=n=\operatorname{dim} X \tag{2.4}
\end{equation*}
$$

where $p=p[H]$.

Proposition 2.4:

If Σ is both completely reachable and completely observable then f_{Σ} is a realization of the input/output map $\mathrm{f}_{\text {. }}$ Proof: Since Σ is both completely reachable and completely observable the map $f_{\Sigma}=g \cdot h$ is a factorization of f; therefore, $f=f_{\Sigma}$. Definition 2.5:

A realization Σ of $£$ is called a canonical or minimal realization iff Σ is both completely reachable and completely observable. Theorem 2.6:

Given an external description, f, of the system Σ, two minimal realizations $\Sigma=(\mathrm{F}, \mathrm{G}, \mathrm{H})$ and $\tilde{\Sigma}=(\mathscr{F}, \mathscr{G}, K)$ are isomorphic to each other
if there exist a unique K-isomorphism $A: X \rightarrow \mathscr{X}$ such that the factorization remains commutative. The system isomorphism can be expressed by the following matrix notations:
(a) $B=\mathrm{AFA}^{-1}$
(b) $\mathscr{G}=A G$
(c) $\mathscr{H}=\mathrm{HA}^{-1}$

Proof: The proof requires the following lemma.
Lemma 2.7:
Let $\Omega, X, \mathscr{X}, \Gamma$ be arbitrary sets. Consider the commutative diagram

and suppose that g_{1} and g_{2} are onto mappings and h_{1} and h_{2} are one-to-one mappings. Then there is a unique map A such that the diagram remains commutative.

Proof: Any element $x \in X$ is the image of at least one element of Ω. Hence if $x \in X$ then there is at least one element $\omega \in \Omega$ such that the set $g_{1}^{-1}(x)$ is not void. For any $\omega \in g_{1}^{-1}(x)$ commutivity implies that

$$
\left(h_{2} \cdot g_{2}\right)(w)=\gamma=\left(h_{1} \cdot g_{1}\right)(w)=h_{1}(x)
$$

Since h_{2} is $1-1$, there is a unique $x=h_{2}^{-1}(\gamma)$ then for such an element $x \in x^{\circ}$

$$
\left.g_{2}(w)=\left(h_{2}^{-1} \cdot\left(h_{1} \cdot g_{1}\right)(w)\right)=\left(h_{2}^{-1} \cdot h_{1}\right) \cdot g_{1}\right)(w)
$$

If the map A is defined as $A(x)=\left(h_{2}^{-1} \cdot h_{1}\right)(x)$ so that

$$
g_{2}(\omega)=\left(A \cdot g_{1}\right)(\omega)
$$

then the triangle $\mathrm{X} \mathscr{X} \Gamma$ commutes since

$$
\left(h_{2} \cdot A\right)(x)=\left(h_{2} \cdot\left(h_{2}^{-1} \cdot h_{1}\right)(x)\right)=h_{1}(x)
$$

Similarity of the mappings in the commutative diagram implies the proof in the opposite direction. Now since h_{1} and h_{2} are both 1-1 mappings and the mapping A is unique then clearly A^{-1} exists.

The following corollary stated without proof is an immediate result. Corollary 2.8:

If the commutative Diagram 2.6 involves K -vector spaces and K-homomorphisms then A is a K-homomorphism.

We now proceed with the proof of Theorem 2.6. Consider the following commutative diagram

Using Lemma 2.7, A: $X \rightarrow \mathscr{X}$ is a unique vector space isomorphism which is compatible with the commutativity of the factorization.

The matrix relationships (b) and (c) can be easily proved from the diagram,

$$
\begin{gathered}
\mathscr{G U}=: \mathscr{X}=\mathrm{AX}=\mathrm{AGU} \\
\mathscr{G}=\mathrm{AG} \\
\mathscr{H A X}=\mathscr{H} \mathscr{X}=\mathrm{Y}=\mathrm{HX} \\
\mathscr{H}=\mathrm{HA}^{-1}
\end{gathered}
$$

To prove matrix relationship (a) consider the commutative diagram

From this diagram

$$
\begin{gathered}
\mathscr{X}=\mathrm{AX}=\mathrm{AFX}=\mathscr{F} \mathscr{X} \\
\mathrm{AFA}^{-1}=\mathscr{F}
\end{gathered}
$$

Theorem 2.6 states that all minimal realizations are equivalent to each other. The mapping or linear transformation A relating any two given minimal realizations can be readily found.

Theorem 2.9:

If ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) and ($(\tilde{\mathscr{K}}, \mathscr{G}, \mathscr{K})$ are two given minimal realizations the linear transformation $A X=\mathscr{X}$ relating the two realizations can be computed as,

$$
\begin{align*}
A= & {\left[\mathscr{G}, \mathscr{F} \mathscr{G}, \cdots, \mathscr{F}^{\mathrm{n}-\mathrm{r}} \mathscr{G}\right]\left[G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]^{\mathrm{T}} } \\
& \times\left\{\left[G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]\left[G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]^{\mathrm{T}}\right\}^{-1} \tag{2,9}
\end{align*}
$$

where $\mathrm{r}=\operatorname{rank} \mathscr{G}=\operatorname{rank} \mathrm{G}$
Proof: From Theorem 2.6 the linear transformation A can be related to the matrices G and F by Equation $2.5 a$ and b

$$
\begin{align*}
& \mathscr{G}=\mathrm{AG} \\
& \mathscr{F}=\mathrm{AFA}^{-1} \tag{2.10}
\end{align*}
$$

Now

$$
\begin{aligned}
\mathscr{G} & =\mathrm{AG} \\
\mathscr{F} \mathscr{G} & =\mathrm{AFA}^{-1} \mathrm{AG}=\mathrm{AFG} \\
\mathscr{F}^{2} \mathscr{G} & =\mathscr{F F} \mathscr{G} \mathscr{G}=\mathrm{K}_{\mathrm{AFG}}=\mathrm{AFA}^{-1} \mathrm{AFG}=\mathrm{AF}^{2} \mathrm{G} \\
\vdots & \vdots \\
\mathscr{F}^{\mathrm{n}-\mathrm{r}} \mathscr{G} & =\mathrm{AF}^{\mathrm{n}-\mathrm{r}} \mathrm{G}
\end{aligned}
$$

so that

$$
\begin{equation*}
\left[\mathscr{G}, \mathscr{F} \mathscr{G}, \cdots,,^{n-r} \mathscr{G}\right]=A\left[G, F G, \cdots, F^{n-r} G\right] \tag{2.11}
\end{equation*}
$$

Since Σ is completely reachable

$$
\rho\left[\mathscr{F}, \mathscr{H} \mathscr{G}, \cdots, \mathscr{\mathscr { K }}^{\mathrm{n}-\mathrm{r}} \mathscr{\mathscr { O }}\right]=\rho\left[\mathrm{G}, \mathrm{FG}, \cdots, \mathrm{~F}^{\mathrm{n}-\mathrm{r}} \mathrm{G}\right]=\mathrm{n}
$$

and the matrix

$$
\begin{equation*}
\left[G, F G, \cdots, F^{n-r} G\right]\left[G, F G, \cdots, F^{n-r} G\right]^{T} \tag{2.12}
\end{equation*}
$$

is nonsingular, one concludes that,

$$
\begin{aligned}
\mathrm{A}= & {\left[\mathscr{G}, \mathscr{F} \mathscr{G}, \cdots, \mathscr{F}^{\mathrm{n}-\mathrm{r}} \mathscr{G}\right]\left[G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]^{\mathrm{T}} } \\
& \times\left\{\left[G, F G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]\left[G, F G, \cdots, F^{\mathrm{n}-\mathrm{r}} G\right]^{\mathrm{T}}\right\}^{-1}
\end{aligned}
$$

The following observations can now be made with regard to the determination of an internal description from an external description:
(1) Given an external description of a system a factorization exists iff the system is completely observable and completely reachable. Practically this implies that one can identify only those states that are observable and with regard to controllablity one can only hope to control controllable states. There is no need to consider any other situation.
(2) If any two systems Σ and $\tilde{\Sigma}$ are both completely reachable and completely observable and have the same input/output map f, then they differ only in the coordination of their state space.
(3) If a minimal realization Σ of f exists, then it is essentially uniquely determined by f, since coordination of states is irrelevant.
2.3. Minimal Realizations and Parameter Identification

Having an external description and the knowledge that Σ is a minimal realization of the map f, one may surmise that the $n(n+r+p)$ parameters in the triple (F, G, H) can be uniquely determined. However, unless the siructure of the triple (F, G, H) is constrained the $n(n+r+p)$ parameters cannot be uniquely determined. The following simple example expounds the above statement. Given the external description of a single input/single output second order system that is completely reachable and completely observable the internal description has the form,

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+\left[\begin{array}{l}
g_{11} \\
g_{12}
\end{array}\right] u(k),} \\
& y(k)=\left[\begin{array}{ll}
h_{11} & h_{12}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]
\end{aligned}
$$

while the external description is specified by the z-transfer function,

$$
\begin{equation*}
\frac{Y(z)}{U(z)}=\frac{\left(\beta_{1} z+\beta_{0}\right)}{\left(z^{2}+\alpha_{1} z+\alpha_{0}\right)} \tag{2.14}
\end{equation*}
$$

The internal description has eight unknown parameters, while the external description is completely specified by only four parameters, which in turn implies that only four parameters can be uniquely determined in the internal description via the external description. A possible constraint that can be placed on the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) in the example is the well known single input/single output canonical form

$$
F=\left[\begin{array}{cc}
0 & 1 \tag{2.15}\\
f_{21} & f_{22}
\end{array}\right], \quad G=\left[\begin{array}{l}
g_{11} \\
g_{12}
\end{array}\right], \quad H=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

If the triple (F, G, H) is known to have this canonical form then the following relationships exist between the parameters in the internal and external descriptions,

$$
\begin{array}{ll}
f_{21}=-\alpha_{0} & g_{11}=\beta_{1} \\
f_{22}=-\alpha_{1} & g_{12}=\beta_{0}-\alpha_{1} \beta_{1} \tag{2.16}
\end{array}
$$

Analogously in multiple input/output systems all of the parameters in Equation 2.1 can not be uniquely determined.

Although many canonical forms for multiple input/output systems have been developed $(22,23)$ location of the identifiable parameters must fit the proposed parameter identification algorithm presented in Chapter 3 of this dissertation. Therefore canonical forms for minimal
realizations will be presented as needed for use in the parameter identification algorithm.

2.4. Cyclic Spaces and Cyclic Systems

Although cyclic subspaces have been used in linear algebra (23), extension to the systems area has not been extensive. Cyclic spaces however frequently arise and the condition of a system not being cyclic is in general a singular case.

Let X be a finite abstract vector space over a field K and $F a$ linear operator on X. If x is any vector in X, there is a smallest subspace of X which is invariant under F and contains x. Definition 2.10:

If x is any vector in $X, a \neq 0$, the F-cyclic subspace generated by x is the subspace $Z(x ; F)$ spanned by the vectors $F^{k} x, k \geq 0$. If $Z(x ; F)=X$ then x is called a cyclic vector for F.

In futher discussion our only concern will be the case where $\mathrm{Z}(\mathrm{x} ; \mathrm{F})=\mathrm{X}$ which induces the following definition. Definition 2.11:

If x is a cyclic vector for F then the n-dimensional vector space X is said to be cyclic with respect to F if $\rho\left[x, F x, \cdots, F^{n-1} x\right]=n$. Definition 2.12:

If the state space X is cyclic with respect to F the system Σ is said to be cyclic.

Theorem 2.13:

If F is a linear operator on a finite n-dimensional vector space X, then F has a cyclic vector if and only if there is some ordered basis for X in which F is represented by the companion matrix of the minimal polynomial for F.

Proof: By definition if F has a cyclic vector then there is an ordered basis for x; namely, the vectors $x, \ldots, F^{n-1} x$. If $x_{i}=F^{i-1} x, i=$ $1, \cdots$, n then

$$
\begin{aligned}
& F x_{i}=x_{i+1} ; i=1, \cdots, n-1 \\
& F x_{n}=-c_{0} x_{1}-c_{1} x_{2}-\cdots-c_{n-1} x_{n}
\end{aligned}
$$

By definition, the matrix of F in this basis is the transpose of the matrix of coefficeints of the above system of equations. Hence, the matrix has the form of a companion matrix of the minimal polynomial for F . Conversely if there exists a basis for X in which F is represented by the companion matrix of its minimal polynomial, then x is a cyclic vector for F .

The following remarks are direct results of Theorem 2.13. If x is a cyclic vector for F, then the minimal polynomial for F must have degree equal to the dimension of the space X; hence, by the CaleyHamilton theorem the minimal and characteristic polynomials for F are identical. Conversely if the minimal and characteristic polynomials of F are identical then F has a cyclic vector.

The noncyclic condition occurs whenever the minimal and characteristic polynomials of F are not identical. This corresponds to the condition of two or more uncoupled Jordon blocks in the Jordon canonical form having the same minimal polynomial. This can easily be verified by considering the situation where two uncoupled Jordan blocks have the same minimal polynomial. From linear algebra the minimal polynomial of the Jordan canonical form of the operator F is the least common multiple of the minimum polynomials of the Jordan blocks. Consequently, if two or more minimum polynomials are identical then the characteristic polynomial and the minimum polynomial can not be identical.

Theorem 2.14:

If two or more uncoupled Jordan blocks in a Jordan canonical form have identical minimal polynomials the linear operator associated with the Jordan form is not cyclic.

Proof: The theorem has been proven in the preceding discussion.
Note that noncyclicity of a system corresponds to having two or more identical decoupled subsystems imbedded in a system. Theorem 2.15:

If, given F, there is a G of rank 1 (G a vector denoted by g) such that the pair $\{F, g\}$ is completely reachable then F has a cyclic vector.

Proof: Let χ_{F} be the characteristic polynomial of the matrix F; i.e., $\chi_{F}=\operatorname{det}(2 I-F)$. The minimal polynomial ψ_{F} of F is defined to be the monic polynomial of smallest degree such that $\psi_{F}(F)=0$.

Suppose $\operatorname{deg}\left(\psi_{F}\right)=\ell<\mathrm{n}$ is the degree of the minimal polynomial. Then by the Caley-Hamilton Theorem

$$
\psi_{F}(F) g=F^{\ell} g+\sum_{i=1}^{\ell} \alpha_{i} F^{\ell-i} g=0
$$

which says that there exists a linear relationship between the powers of F. This is a contradiction to the premise that

$$
\rho\left[g, F g, \cdots, F^{n-1} g\right]=n
$$

videlicit,

$$
g+\alpha_{2} \mathrm{Fg}+\cdots+\alpha_{\mathrm{n}-1} \mathrm{~F}^{\mathrm{n}-1} \mathrm{~g} \neq 0 \quad \forall \alpha_{\mathrm{i}} \neq 0
$$

Consequently, $\psi_{F}=X_{F}$; vebatim, F has a cyclic vector.
Theorem 2.15 states that any single input, completely reachable system is cyclic. Unfortunately there is no similar statement for a multiple input completely reachable system.

In our discussion of cyclic spaces and cyclic systems the cyclic vector $\mathrm{x} \in \mathrm{X}$ that generates a basis for the state space has been assumed to exist, yet it is not clear what x 's are cyclic vectors. Theorem 2.16 (Gopinath):

If Σ is cyclic then almost any $\mathrm{x} \varepsilon \mathrm{X}$ is a cyclic vector; i.e., $P(x$ is a cyclic vector $)=1$. Proof: Let x be selected from a random distribution of vectors in X . In reference (24) it has been shown that there exist only a finite number of invariant subspaces of $\operatorname{dim}<\mathrm{n}$ under F . (Recall that for a F-invariant subspace W, if $x \in W$ then $F x \in W$). Now since Σ is cyclic
and there exist only a finite number of F -invariant subspace the probability of selecting a x contained in an invariant subspace of $\operatorname{dim}<\mathrm{n}=0$. Hence $\mathrm{P}(\mathrm{x}$ is a cyclic vector $)=1$.

Definition 2.17:
If Σ is a minimal realization and also cyclic, then Σ will be said to be identifiable.

In this section the work of Kalman (18) in the area of minimal realizations and Gopinath's work (25) with regard to cyclic systems has been utilized to determine the necessary criteria for system parameter identification from input/output data. To paraphase Definition 2.17 the necessary criteria for system parameter identification are:

1) The system must be a minimal realization in order to identify it from its input/output map.
2) The system can not assume an arbitrary form; i.e., a maximum of $n(r+p)$ parameters can be identified.

3) The system must be cyclic.

3.0. A PARAMETER IDENTIFICATION ALGORITHM

3.1. External Description Via the Internal Description

In this section the external description of a system will be generated by means of the internal description

$$
\begin{align*}
x(k+1) & =F x(k)+G u(k) \\
y(k) & =H x(k) \tag{3.1}
\end{align*}
$$

where x is a $\mathrm{n} \times 1$ state vector, u is a $\mathrm{r} \times 1$ input vector, y is a $p \times 1$ output vector, F is a $n \times n$ state transition matrix, G is a $n \times r$ input weighting matrix and H is a $p \times n$ output observation matrix.

The following requirements will be imposed on Σ;
a) Σ is both completely reachable and completely observable
b) $\operatorname{dim} \Sigma$ is known
c) the matrix F is cyclic
d) H has full rank.

Note that these requirements imply Σ is identifiable.

Definition 3.1:

A selector matrix S is a $\ell \times m$ matrix ($\ell \leq m$) such that multiplication of a $m \times n$ matrix M by S results in ℓ of the rows of M being identically reproduced. The definition implies that $S \cdot$ is specified as

$$
\begin{align*}
& S(i, j)=0 \quad \text { if } . j \neq k_{i} \\
& S\left(i, k_{j}\right)=\delta_{i j} \tag{3.2}\\
& k_{1}<k_{2}<\cdots<k_{l}
\end{align*}
$$

In the subsequent development, we will make use of two particular selector matrices, S_{1} and S_{2} of dimension ($\mathrm{pn}^{*} \times \mathrm{p}\left(\mathrm{n}^{*}+1\right)$) defined as

$$
\begin{align*}
& S_{1}=\left[\begin{array}{l:l}
I_{p n} * & 0_{p n * \times p}
\end{array}\right] \tag{3.3}\\
& S_{2}=\left[\begin{array}{ll:l}
0_{p n *} \times p & I_{p n *}
\end{array}\right]
\end{align*}
$$

where $n *=n-\rho(H)+1$.
The following development parallels that of Gopinath (25) and Budin (26) and is repeated here for completeness. Consider iteration of the state equation and the observation equation given by Equation 3.1 so that

$$
\begin{align*}
& y(k)=H x(k)+0 \\
& y(k+1)=H F x(k)+H G u(k) \tag{3.4}\\
& \vdots \\
& y\left(k+n^{*}-1\right)=H F^{n^{*-1}} x(k)+\sum_{t=0}^{n *-2} H F^{n *-2-t} G u(k+t)
\end{align*}
$$

This can be expressed in matrix notation as

$$
\bar{y}_{n^{*}}(k)=\left[\begin{array}{l}
H \tag{3.5}\\
H F \\
\vdots \\
H F^{n^{*-1}}
\end{array}\right] x(k)+S_{1} R_{n^{*}} \bar{u}_{n^{*}}(k)
$$

where,

$$
\begin{align*}
& \overline{\mathrm{y}}_{\mathrm{n} *}^{\mathrm{T}}(\mathrm{k}) \triangleq\left[\mathrm{y}^{\mathrm{T}}(\mathrm{k}), \mathrm{y}^{\mathrm{T}}(\mathrm{k+1}), \cdots, \mathrm{y}^{\mathrm{T}}(\mathrm{k+n*-1)]}\right. \\
& \bar{u}_{\mathrm{n}^{*}}^{\mathrm{T}}(\mathrm{k}) \triangleq\left[\mathrm{u}^{\mathrm{T}}(\mathrm{k}), \mathrm{u}^{\mathrm{T}}(\mathrm{k}+1), \cdots, u^{T}\left(k+\mathrm{n}^{*}-1\right)\right] \tag{3.6}
\end{align*}
$$

and

$$
R_{\mathrm{n}^{*}} \triangleq\left[\begin{array}{lllllll}
0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \tag{3.7}\\
\mathrm{HG} & 0 & \cdot & \cdot & \cdot & 0 & 0 \\
\mathrm{HFG} & \mathrm{HG} & \cdot & \cdot & \cdot & 0 & 0 \\
\bullet & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\
\bullet & \bullet & \cdot & \cdot & \cdot & \cdot & \vdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\
\mathrm{HF}^{\mathrm{n} *-1} \mathrm{G} & \cdot & \cdot & \cdot & \cdot & \mathrm{HFG} & \mathrm{HG}
\end{array}\right]
$$

Since the system is completely observable

$$
\rho\left[H^{T}, F^{T} H^{T}, \cdots,\left(F^{T}\right)^{n^{*}-1} H^{T}\right]=n
$$

and from the definition of a selector matrix there exists a S such that,

$$
S\left[\begin{array}{l}
H \tag{3.8}\\
H F \\
\vdots \\
\cdot \\
H F^{n^{*-1}}
\end{array}\right]=I_{n \times n}
$$

Equation 3.8 follows from the fact that coordination of the state space is irrelevant; i.e., any basis may be chosen.

Multiplication of Equation 3.5 by S then results in,

$$
\begin{equation*}
S \bar{y}_{n^{*}}(k)=x(k)+S S_{1} R_{n *} \bar{u}_{n *}(k) \tag{3.9}
\end{equation*}
$$

Iterating one more step,

$$
\begin{equation*}
S \bar{y}_{n^{*}}(k+1)=F\left[S \bar{y}_{n *}(k)-S S_{1} R_{n *} \bar{u}_{n *}(k)\right]+G u(k)+S S_{1} R_{n *} \bar{u}_{n *}(k+1) \tag{3.10}
\end{equation*}
$$

which in turn implies,

$$
\begin{align*}
& \triangleq\left[\begin{array}{l:l}
F & R
\end{array}\right]\left[\begin{array}{l}
S_{y_{n *}}(k) \\
\bar{u}_{n^{*}}(k)
\end{array}\right] \tag{3.11}
\end{align*}
$$

where $R=-\mathrm{FSS}_{1} \mathrm{R}_{\mathrm{n} *}+\mathrm{SS}_{2} \mathrm{R}_{\mathrm{n} *}{ }^{*}$
This is an external description of the system Σ which does not involve the state space X, and in principle can be solved for the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$).

Solution for the triple (F, G, H) is possible whenever the product matrix

$$
\mathscr{P}_{B_{n} *}(k) \triangleq\left[\begin{array}{c:c}
S & 0 \tag{3.12}\\
\hdashline 0 & I_{r n *}
\end{array}\right]\left[\begin{array}{lll}
\bar{y}_{n *}(k) & \cdots & \bar{y}_{n^{*}}\left(k+n+r n^{*}-1\right) \\
\bar{u}_{n *}(k) & \cdots & \bar{u}_{n *}\left(k+n+r n^{*}-1\right)
\end{array}\right]
$$

is row equivalent to a ($n+r n^{*}$) identity matrix in the expression

$$
S A_{n *}(k+1) \triangleq S\left[\bar{y}_{n *}(k+1) \ldots \bar{y}_{n *}(k+n+r n *)\right]=[F: R] \mathscr{F P}_{B^{*}}(k)
$$

Here the definition of $\mathscr{P}, A_{n^{*}}(k+1)$, and $B_{n_{*}}(k)$ follows from Equations 3.12 and 3.13.

If $\mathscr{P}_{\mathrm{B}_{\mathrm{n}}{ }^{*}}(\mathrm{k})$ is nonsingular one can solve for $[\mathrm{F}: \mathrm{R}]$. As shown in Reference (25) pp. 36-38, G can be obtained from $\left[\begin{array}{l:l}\mathrm{F} & \mathrm{R}\end{array}\right]$ using the relationship

$$
\begin{equation*}
G=R_{0}+F R_{1}+\cdots+F^{n *-1} R_{n *-1} \tag{3.14}
\end{equation*}
$$

where R is partitioned as $\left[R_{0}: R_{1}: \cdots: R_{n \times-1}\right] . \quad R_{i} n \times r \psi_{i}$. The matrix H is found by solving the n equations resulting from Equation 3.8.

3.2. A Canonical Form For Single Input/Single Output Systems

Our attention is first focused on the simplest case, that of the single input/single output system. As pointed out in Section 2.3 all the parameters in triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) cannot be identified from knowledge of the external description. With this in mind, the following definition constrains the system to assume a certain canonical form.

Definition 3.2:

The single input/single output identification canonical form consists of the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) specified by,

$$
\begin{align*}
& F=\left[\begin{array}{ccccccc}
0 & 1 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & 1 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdot & \cdot & \cdot & 1 \\
-\alpha_{n} & -\alpha_{n-1} & -\alpha_{n-2} & \cdot & \cdot & \cdot & -\alpha_{1}
\end{array}\right] \tag{3.15}\\
& G^{T}=\left[\begin{array}{lllll}
\beta_{1} & \beta_{2} & \cdot & \cdot & \beta_{n}
\end{array}\right] \\
& H=\left[\begin{array}{lllll}
1 & 0 & \cdot & \cdot & 0
\end{array}\right]
\end{align*}
$$

where the α_{i} 's and $\beta_{i}^{\prime} s$ are the $2 n$ parameters to be identified. As shown in Theorem 2.9 any single input/single output minimal realization can be expressed with regard to the basis of the above identification canonical form.

The determination of a appropriate selector matrix can be readily ascertained by formulation of the observability matrix,

$$
\mathscr{O}=\left[\begin{array}{l}
H \tag{3.16}\\
H F \\
\bullet \\
\cdot \\
H F^{n-1}
\end{array}\right] \triangleq I_{n}
$$

Then from Equation 3.8 clearly $S=I$. Equation 3.11 reduces to,

$$
\left[\begin{array}{llll}
\bar{y}_{n}(k+1) & \cdots & \left.\left.\bar{y}_{n}(k+2 n)\right]=\left[\begin{array}{l:l}
F & R
\end{array}\right]\left[\begin{array}{lll}
\bar{y}_{n}(k) & \cdots & \bar{y}_{n}(k+2 n-1) \\
\bar{u}_{n}(k) & \cdots & \bar{u}_{n}(k+2 n-1)
\end{array}\right], ~\right] \tag{3.17}
\end{array}\right.
$$

which has solution whenever $\mathrm{B}_{\mathrm{n} *}(\mathrm{k})$ is nonsingular.

3.3. A Canonical Form For Multiple Input/Multiple Output Systems

The discussion in Section 2.3 points out that all the parameters in the triple (F, G, H) cannot be deduced from the external description. Un1ike the phase-variable canonical form for the single input/single output system, the corresponding canonical forms for multivariable systems are not unique. In this section a canonical form for a multiple input/multiple output system will be presented.

Definition 3.3:

The multiple input/multiple output identification canonical form consisting of the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) is specified by,

$$
\begin{aligned}
& G=\left[\begin{array}{lllll}
\beta_{11} & \cdot & \cdot & \cdot & \beta_{1 r} \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot & & & \cdot & \cdot \\
\beta_{n 1} & \cdot & \cdot & \cdot & \beta_{n r}
\end{array}\right] \\
& H=\left[\begin{array}{l:l}
I_{p} & 0
\end{array}\right]
\end{aligned}
$$

where $m=n-p$. Observe that the m columns and rows form $a m \times m$ identity matrix; i.e.,

$$
F=\left[\begin{array}{l:c}
0 & I_{m} \tag{3.19}\\
\hdashline F_{1} & F_{2}
\end{array}\right]
$$

Note that the canonical form is devised so that the first n rows of the observability matrix are not only linearly independent but
identically equal to a $n \times n$ identity matrix,

$$
O=\left[\begin{array}{l}
\mathrm{H} \tag{3.20}\\
\mathrm{HF} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{HF}^{\mathrm{n}-\mathrm{p}}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 0 & 0 & \cdot & \cdot & . & 0 \\
0 & 1 & 0 & \cdot & \cdot & . & 0 \\
0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdot & . & . & 1 \\
\hdashline x & x & x & x & x & x & x \\
x & x & x & x & x & x & x
\end{array}\right]
$$

The free parameters are then the $n r$ parameters of the input weighting matrix and the np parameters associated with the matrices F_{1} and F_{2}. The corresponding selector matrix needed for application of the algorithm can be easily computed from Equation 3.7 as

$$
s=\left[\begin{array}{l:l}
I_{n} & 0 \tag{3.21}
\end{array}\right]
$$

The required linear transformation, A, needed to put a triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) into the identifiable canonical form ($\mathscr{F} \mathscr{G}, \mathscr{H}$) can be easily calculated. Consider the two observability matrices where the first n rows on the right hand side are linearly independent,

$$
\left[\begin{array}{l}
\mathscr{H} \tag{3.22}\\
\mathscr{H} \mathscr{F} \\
\cdot \\
\cdot \\
\cdot \\
\mathscr{H}_{\mathscr{F}} \\
n-\beta
\end{array}\right]=\left[\begin{array}{l}
\mathrm{H} \\
\mathrm{HF} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{HF}^{\mathrm{n}-\mathrm{p}}
\end{array}\right] \mathrm{A}^{-1}
$$

Since the first n rows of the left hand matrix are equal to the $n \times n$ identity matrix one has

$$
\left[\begin{array}{lll}
A_{n \times n} \tag{3.23}\\
\hdashline x & x & x \\
x & x & x
\end{array}\right]=\left[\begin{array}{l}
H \\
\underset{\square}{H F} \\
\hdashline-\cdots-\cdots \\
H^{n-p}
\end{array}\right]
$$

Here again Equation 3.13 has solution whenever $\mathscr{S}_{\mathrm{B}_{\mathrm{n} *}}(\mathrm{k})$ is nonsingular. $\mathscr{P} \mathrm{B}_{\mathrm{n}^{*}}(\mathrm{k})$ is nonsingular whenever $\mathrm{B}_{\mathrm{n}^{*}}(\mathrm{k})$ has rank $\mathrm{n}+\mathrm{r} \mathrm{n}^{*}$ since \mathscr{P} always has rank $n+r n^{*}$ for both the single input/single output canonical form and the multiple input/multiple output canonical form.

Theorem 3.4:

The matrix $\mathscr{S}_{\mathrm{B}_{\mathrm{n}}}(\mathrm{k})$ is nonsingular almost surely if Σ is cyclic and the $u(i)$'s are independent random variables taken from a nonlattice distribution.

Proof: The matrix $\mathscr{S}_{\mathrm{B}_{\mathrm{n} *}}(\mathrm{k})$ can be written as,

$$
\begin{aligned}
& {\left[\begin{array}{l:l}
S & 0 \\
\hdashline 0 & I_{r n *}
\end{array}\right] \cdot\left[\begin{array}{l:l}
H & \\
H F & \\
\cdot & 0 \\
\cdot & \\
H F^{n *-1} & \\
\hdashline 0 & I_{r n *}
\end{array}\right] \cdot\left[\begin{array}{l}
x(k) \ldots . \\
\bar{u}_{n *}(k) \cdots(k \pm n+r n *-1) \\
\\
0
\end{array}\right]}
\end{aligned}
$$

If

$$
\rho\left[\begin{array}{l}
x(k) \cdots \cdot x(k+n+r n *-1) \tag{3.25}\\
\bar{u}_{n *}(k) \cdots \bar{u}_{n *}(k+n+r n *-1)
\end{array}\right]=\rho\left[D_{n *}(k)\right]=n+r n *
$$

almost surely then $\mathscr{P}_{\mathrm{B}_{\mathrm{n}} *}(\mathrm{k})$ is nonsingular. Partition the matrix $D_{n}{ }^{(k)}$ so that

$$
D_{n^{*}}(k)=\left[\begin{array}{c}
x(k) \cdot \ldots x\left(k+n+r n^{*}-1\right) \tag{3.26}\\
\hdashline \bar{u}_{n *}(k) \cdots \cdot \bar{u}_{n *}(k+n+r n *-1)
\end{array}\right]
$$

If Σ is cyclic then by Theorem 2.16 almost any x is a cyclic vector so that

$$
\rho\left[x(k) \cdot . x\left(k+n+r n^{*-1}\right)\right]=n \quad \text { almost sure } 1 y
$$

Suppose the $u(i)$'s are taken from a nonlattice distribution, consider the matrix

then $\rho[U]=$ rn* almost surely.

Since the $u(i)$'s are independent random variables taken from a nonlattice distribution the $P(u(i)=u(j))=0 \quad \forall i \neq j$. If any partitioned ($n * r$) $\times(n+r n *)$ matrix has rank $n * r$ then $\rho[U]=n * r_{\text {. }}$. Consider the ($n * r$) $\times(n * r)$ matrix

$$
U_{n^{*}}=\left[\begin{array}{lcccc}
u(k) & \cdot & \cdot & \cdot & u\left(k+n^{*}-1\right) \tag{3.28}\\
u(k+1) & \cdot & \cdot & u\left(k+n^{*}\right) \\
\cdot & & & & \cdot \\
\cdot & & & \cdot & \cdot \\
u\left(k+n^{*}-1\right) & & \cdot & \cdot & u\left(k+2 n^{*}-2\right)
\end{array}\right]
$$

Suppose $\rho\left[U_{n *}\right]<n * r$ then two or more columns of the matrix are linearly dependent. Let the last column be made up of linear combinations of the first n^{*-1} columns; viz,

$$
\left[\begin{array}{c}
u(k+n *-1) \tag{3.29}\\
\cdot \\
\cdot \\
u(k+2 n *-2)
\end{array}\right]=\sum_{i=1}^{n *-1} \alpha_{i} \cdot\left[\begin{array}{c}
u(k+n *-1-i) \\
\cdot \\
\cdot \\
u(k+2 n *-2-i)
\end{array}\right]
$$

The α_{i} 's can be uniquely determined by solving the first $n *-1$ equations. The remaining term $u(k+2 n *-2)$ then can be expressed as a unique linear combination of the α_{i} 's so that

$$
\begin{equation*}
u(k+2 n *-2)=\sum_{i=1}^{n *-1} \alpha_{i} \cdot u(k+2 n *-2-i) \tag{3.30}
\end{equation*}
$$

which implies that $u(k+2 n *-2)$ is dependent on the previous $n *-1$ random variables which contradicts the premise that the random variables be independent. Consequently, $\rho\left[U_{n^{*}}\right]=\rho[U]=n * r$ almost surely. The rank of $\mathrm{B}_{\mathrm{n} *}(\mathrm{k})$ then is $\mathrm{n}+\mathrm{n} *_{r}$ which implies that $\mathscr{P} \mathrm{B}_{\mathrm{n}}{ }^{*}(\mathrm{k})$ is nonsingular almost surely.

3.4. Identification From Noisy Input/Output Observations

In the previous section we have shown that given input and output observations one can identify the corresponding unknown parameters in the F and G matrices. The more realistic situation, depicted in Figure 3.1, is that where the measurements are corrupted with noise.

Figure 3.1. Discrete linear system measurement model

The available measurements are defined as

$$
\begin{align*}
& w(k)=u(k)+v(k) \\
& z(k)=y(k)+\mu(k) \tag{3.31}
\end{align*}
$$

where $\nu(k)$ is a r-dimensional zero mean gaussian white sequence with covariance

$$
E\left\{\nu(j) \nu^{T}(k)\right\}=Q(k) \delta_{j k} \quad \forall j, k=0,1, \ldots
$$

and $\mu(k)$ is a p-dimensional zero mean gaussian white sequence with covariance

$$
E\left\{\mu(j) \mu^{T}(k)\right\}=R(k) \delta_{j k} \quad \forall j, k=0,1, \ldots
$$

We allow the possibility that $\left\{\nu(k), k \in Z^{+}\right\}$and $\left\{\mu(k), k \in Z^{+}\right\}$ may be correlated with each other, the cross-covariance matrix being

$$
E\left\{\mu(k) \nu^{T}(k)\right\}=P(k) \delta_{j k} \quad \forall j, k=0,1, \ldots
$$

The noise processes $\nu(k)$ and $\mu(k)$ are assumed to be independent of the input and output.

Our objective is to determine an estimate of the triple ($\mathrm{F}, \mathrm{G}, \mathrm{H}$) namely ($\hat{\mathrm{F}}, \hat{\mathrm{G}}, \hat{\mathrm{H}}$) from the available measurements.

Definition 3.5:

An estimate $\hat{\theta}_{\mathrm{N}}$ of a parameter θ is said to be consistent if

$$
\begin{equation*}
P\left(\lim _{N \rightarrow \infty} \hat{\theta}_{N}=\theta\right)=1 \tag{3.32}
\end{equation*}
$$

In the following discussion we will make use of the following definitions,

$$
\begin{align*}
& \bar{z}_{\mathrm{n}^{*}}^{\mathrm{T}}(\mathrm{k}) \triangleq\left[\mathrm{z}^{\mathrm{T}}(\mathrm{k}) \quad \mathrm{z}^{\mathrm{T}}(\mathrm{k}+1) \quad \text {. . . } z^{\mathrm{T}}(\mathrm{k}+\mathrm{n} *-1)\right] \\
& \bar{w}_{n^{*}}^{T}(k) \triangleq\left[w^{T}(k) \quad w^{T}(k+1) \quad \text {. } \quad . \quad w^{T}\left(k+n^{*}-1\right)\right] \tag{3.33}\\
& \bar{\nu}_{n^{*}}^{T}(k) \triangleq\left[\nu^{T}(k) \quad \nu^{T}(k+1) \quad \text {. . . } \nu^{T}(k+n *-1)\right] \\
& \bar{\mu}_{n^{*}}^{T}(k) \triangleq\left[\mu^{T}(k) \quad \mu^{T}(k+1) \quad \text {. } \quad . \quad \mu^{T}\left(k+n^{*}-1\right)\right]
\end{align*}
$$

The following covariance matrices are also utilized,

$$
\begin{array}{ll}
E\left\{\bar{\nu}_{n^{*}}(i)\right. & \left.\bar{\nu}_{n^{*}}^{T}(j)\right\} \triangleq \bar{Q}_{n^{*}}(i-j) \\
E\left\{\bar{\mu}_{n^{*}}(i)\right. & \left.\bar{\mu}_{n^{*}}^{T}(j)\right\} \triangleq \bar{R}_{n^{*}}(i-j) \tag{3.34}\\
E\left\{\bar{\mu}_{n^{*}}(i)\right. & \left.\bar{v}_{n^{*}}^{T}(j)\right\} \triangleq \bar{P}_{n^{*}}(i-j)
\end{array}
$$

Note that

$$
\begin{array}{ll}
\bar{Q}_{n^{*}}(1)=\bar{v}_{n *}(k+i+1) \bar{\nu}_{n *}^{T}(k+i) & \forall i, k=0,1,2, \ldots \\
\bar{R}_{n *}(0)=\bar{\mu}_{n *}(k) \bar{\mu}_{n *}^{T}(k) & \forall k=0,1,2, \ldots
\end{array}
$$

Motivation for using a consistent estimator follows. Suppose $\mathscr{S}_{\mathrm{B}}^{\mathrm{n} *}{ }^{(\mathrm{k})}$ is nonsingular in the noise free case. Then

$$
S\left[\bar{y}_{n^{*}}(k+1) \ldots \bar{y}_{n^{*}}\left(k+n+r n^{*}\right)\right]\left\{\mathscr{P}\left[\begin{array}{lll}
\bar{y}_{n *}(k) & \ldots & \bar{y}_{n^{*}}\left(k+n+r q^{*}-1\right) \tag{3.35}\\
\bar{u}_{n *}(k) & \ldots & \bar{u}_{n^{*}}\left(k+n+r n^{*}-1\right)
\end{array}\right]\right\}^{-1}=[F, R]
$$

for any k. Consequently,

$$
\begin{equation*}
\left\{\frac{1}{N} \sum_{k=1}^{N} S A_{n *}(k+1)\right\}\left\{\frac{1}{N} \sum_{k=1}^{N} \mathscr{S}_{B_{n *}}(k)\right\}^{-1}=[F, R] \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\frac{1}{N} \sum_{k=1}^{N} S A_{n^{*}}(k+1) B_{n^{*}}^{T}(k) \mathscr{C}^{T}\right\}\left\{\frac{1}{N} \sum_{k=1}^{N} \mathscr{S}_{B^{*}}(k) B_{n^{*}}^{T}(k) \mathscr{P}^{T}\right\}^{-1}=[F, R] \tag{3.37}
\end{equation*}
$$

It is reasonable to expect similar results in the noisy observation case where the $\bar{y}_{n *}(k)$'s are replaced by $\bar{z}_{n}{ }^{\prime *}(k)$'s and the $\bar{u}_{n *}(k)$'s are replaced with $\bar{w}_{n *}(k)$'s.

Proposition 3.6:
The estimate

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{1}{N} \sum_{k=1}^{N} S A_{n^{*}}(k+1) B_{n^{*}}^{T}(k) S^{T}-\left(n+r n^{*}\right) S\left[\bar{R}_{n^{*}}(1)\right. \\
\left.\bar{P}_{n^{*}}(1)\right] \mathscr{P}^{T}
\end{array}\right\} \\
& \left\{\frac{1}{N} \sum_{k=1}^{N} \mathscr{S}_{B_{n *}}(k) B_{n^{*}}^{T}(k) \mathscr{P}^{T}-\left(n+r n^{*}\right) \mathscr{S}\left[\begin{array}{c:c}
\bar{R}_{n^{*}}(0) & \bar{P}_{n *}(0) \\
\hdashline \mathrm{P}_{\mathrm{n} *}^{T}(0) & \bar{Q}_{n^{*}}(0)
\end{array}\right] \mathscr{P}^{T}\right\}^{-1}=\left[\hat{F}_{N}, \hat{R}_{N}\right] \tag{3.38}
\end{align*}
$$

is an unbiased consistent estimate as $\mathrm{N} \rightarrow \infty$.
Proof: Rewriting Equation 3.38 in terms of the noisy observations one has,

$$
\begin{aligned}
& \left\{\frac{1}{N} \sum_{k=1}^{N} S\left[\sum_{i=1}^{n+r n^{*}} \bar{z}_{n^{*}}(k+i) \overline{z_{n^{*}}}{ }^{T}(k+i-1): \sum_{i=1}^{n+r n *} \bar{z}_{n^{*}}(k+i) \bar{w}_{n^{*}}^{T}(k+i-1)\right] \mathscr{S}^{T}\right. \\
& \left.-\left(n+r n^{*}\right) S\left[\bar{R}_{n^{*}}(1): \bar{P}_{n^{*}}(1)\right] \mathscr{P}^{T}\right\} \\
& \left\{\begin{array}{l}
\frac{1}{N} \sum_{k=1}^{N} \mathscr{S}\left[\begin{array}{l}
\sum_{i=1}^{n+n n^{*}} \bar{z}_{n^{*}}(k+i-1) \bar{z}_{n^{*}}^{T}(k+i-1)
\end{array} \sum_{i=1}^{n+r n^{*}} \bar{z}_{n^{*}}(k+i-1) \bar{w}_{n^{*}}^{T}(k+i-1)\right. \\
\sum_{i=1}^{n+r n^{*}} \bar{w}_{n^{*}}(k+i-1) \bar{z}_{n^{*}}^{T}(k+i-1)
\end{array} \sum_{i-1}^{T} \bar{w}_{n^{*}}(k+i-1) \bar{w}_{n^{*}}^{T}(k+i-1)\right]
\end{aligned}
$$

$$
\left.-\left(n+r n^{*}\right) \mathscr{P}\left[\begin{array}{c:c}
\bar{R}_{n *}(0) & \bar{P}_{n *}(0) \tag{3.39}\\
\hdashline \bar{P}_{n *}^{T}(0) & \bar{Q}_{n^{*}}(0)
\end{array}\right] \mathscr{S}^{T}\right\}=\left[\begin{array}{l}
\left.\hat{F}_{N}, \hat{R}_{N}\right]
\end{array}\right.
$$

Taking the limit as $N \rightarrow \infty$ (the expectation of both sides) results in

$$
\begin{align*}
& E\left\{\mathscr{S}\left[\begin{array}{l}
\bar{y}_{n^{*}}(k) \ldots \bar{y}_{n^{*}}\left(k+n+r n^{*-1}\right) \\
\bar{u}_{n^{*}}(k) \ldots \bar{u}_{n *}\left(k+n+r n^{*}-1\right)
\end{array}\right]\left[\begin{array}{cc}
\bar{y}_{n *}^{T}(k) & \bar{u}_{n *}^{T}(k) \\
\cdot & \vdots \\
\cdot & \vdots \\
\bar{y}_{n *}^{T}\left(k+n+r n^{*}-1\right) & \bar{u}_{n *}^{T}(k+n+r n *-1)
\end{array}\right] \mathscr{S}^{T}\right\}^{-1} \\
& =E\left\{S A_{n^{*}}(k+1) B_{n^{*}}^{T}(k) \mathscr{F}^{\mathcal{F}}\right\} E\left\{\mathscr{P}_{B_{n}}(k) B_{n^{*}}^{T}(k) \mathscr{S}^{\boldsymbol{F}}\right\}^{-1}=\left[\hat{F}_{\infty}, \hat{R}_{\infty}\right] \tag{3.40}
\end{align*}
$$

By Equation 3.37 this implies that

$$
\begin{equation*}
\left[\hat{F}_{\infty}, \hat{R}_{\infty}\right]=[F, R] \tag{3.41}
\end{equation*}
$$

so the estimator is consistent.

4.0. APPLICATION OF THE PARAMETER IDENTIFICATION ALGORITHM

This section will investigate the application of the algorithm developed in Chapter 3 with regard to the identification of the parameters that make up the equations of motion of an aircraft. Flight parameter data for the $\mathrm{F}-105 \mathrm{~B}$ were used to determine the behavior of the algorithm under simulated flight conditions. The following tables taken from reference (27) tabulate the necessary parameters needed to specify both the linearized longitudinal and lateral equations of motion for the $\mathrm{F}-105 \mathrm{~B}$.

4.1. Identification of the Longitudinal Equations of Motion of an Aircraft

The longitudinal equations of motion of an aircraft can be expressed as

$$
\left[\begin{array}{l}
\dot{\theta} \\
\dot{u} \tag{4.1}\\
\dot{w} \\
\dot{q}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-g \cos \theta_{0} & x_{u} & x_{w} & -W_{o} \\
\frac{-g \sin \theta_{o}}{1-Z_{\dot{w}}} & \frac{Z_{u}}{1-Z_{\dot{w}}} & \frac{Z_{w}}{1-Z_{\dot{w}}} & \frac{U_{o}}{1-Z_{\dot{w}}} \\
\frac{-M_{\dot{w}} g \sin \theta_{o}}{1-Z_{\dot{w}}} & M_{u}+\frac{M_{\dot{w}} Z_{u}}{1-Z_{\dot{w}}} & \frac{M_{\dot{w}} Z_{w}}{1-Z_{\dot{w}}}+M_{w} & \frac{M_{\dot{w}} U_{o}}{1-Z_{\dot{w}}}+M_{q}
\end{array}\right]\left[\begin{array}{l}
\theta \\
{\left[\begin{array}{l}
0 \\
x_{\delta_{e}} \\
\frac{z_{\delta_{e}}}{1-Z_{\dot{w}}} \\
\frac{M_{\dot{w}} Z_{\delta_{e}}}{1-Z_{\dot{w}}}+M_{\delta_{e}}
\end{array}\right]}
\end{array}\right.
$$

Table 4.1. Longitudinal dimensional derivatives for the $\mathrm{F}-105 \mathrm{~B}$ Note: Data for body-fixed stability axis

	1 Takeoff	2 Start Cruise
$h(f t)$	Sea Leve1	35,000
M (-)	0.261	0.9
$u_{0}(\mathrm{ft} / \mathrm{sec})$	288.57631	868.10036
$\mathrm{W}_{0}(\mathrm{ft} / \mathrm{sec})$	37.47952	109.66658
α_{0} (deg)	7.4	7.2
$\gamma_{0}(\mathrm{deg})$	10.0	0.0
$\theta_{0}(\mathrm{deg})$	17.4	7.2
$\mathrm{X}_{\mathrm{u}}(1 / \mathrm{sec})$	-0.029	-0.00582
$\mathrm{X}_{\mathrm{w}}(1 / \mathrm{sec})$	0.0793	0.00693
$\mathrm{x}_{\delta_{e}}\left[\left(\mathrm{ft} / \mathrm{sec}^{2}\right) / \mathrm{rad}\right]$	0.0	0.0
$\mathrm{Z}_{\mathrm{u}}(1 / \mathrm{sec})$	-0.1585	-0.01386
$\mathrm{z}_{\mathrm{w}}(-)$	0.0	0.0
$\mathrm{Z}_{\mathrm{w}}(1 / \mathrm{sec})$	-0.311	-0.4
$\mathrm{Z}_{\delta_{e}}\left[\left(\mathrm{ft} / \mathrm{sec}^{2}\right) / \mathrm{rad}\right]$	-17.3	-65.19
$M_{u}(1 / \sec -\mathrm{ft})$	-0.0000119	0.0
$M_{\dot{W}}(1 / f t)$	-0.000259	-0.000117
$M_{W}(1 / s e c-f t)$	-0.00575	-0.00819
$M_{q}(1 / \mathrm{sec})$	-0.345	-0.485
$\mathrm{M}_{\delta_{e}}\left(1 / \mathrm{sec}^{2}\right)$	-2.60	-12.03

FLIGHT CONDITION		
3	4	5
$\begin{aligned} & \text { End } \\ & \text { Cruise } \end{aligned}$	Power Approach	Vmax Clean
35,000	Sea Level	40,000
0.9	0.241	2.1
868.47788	267.89290	2026.21364
106.63568	24.38016	123.92854
7.0	5.2	3.5
0.0	-5.0	0.0
7.0	0.2	3.5
-0.00565	-0.0263	-0.00751
0.0264	0.086	0.0132
0.0	0.0	0.0
-0.0527	-0.1719	-0.0265
0.0	0.0	0.0
-0.466	-0.406	-0.590
-75.19	-19.88	-135.9
0.0	-0.0000101	-0.0000198
-0.000117	-0.000259	-0.00000535
-0.00468	-0.00324	-0.01252
-0.485	-0.319	-0.303
-12.03	-2.703	-21.0

Table 4.2. Lateral dimensional derivatives for the F-105B
Note: Lateral data not available for flight conditions 1 and 2

	FLIGHT CONDITION		
		4 Power Approach	5 Vmax Clean
h(ft)	35,000	Sea Leve 1	40,000
$\mathrm{V}_{\mathrm{T}_{\mathrm{o}}}(\mathrm{ft} / \mathrm{sec})$	875.0	269.0	2030.0
$Y_{V}(1 / \mathrm{sec})$	-0.1497	-0.1878	-0.213
$\mathrm{Y}_{\delta_{a}}^{*}[(1 / \mathrm{sec}) / \mathrm{rad}]$	-0.00173	-0.0021	-0.00221
$\mathrm{Y}_{\delta_{r}}^{*}[(1 / \mathrm{sec}) / \mathrm{rad}]$	0.0234	0.0241	0.0837
$\mathrm{L}_{\beta}^{\prime}\left(1 / \mathrm{sec}^{2}\right)$	-41.1	-21.5	-139.8
$L_{p}^{\prime}(1 / \mathrm{sec})$	-2.8	-1. 185	-3.14
$\mathrm{L}_{\mathrm{r}}^{\prime}(1 / \mathrm{sec})$	1.709	1.251	1.966
$\mathrm{L}_{\delta_{a}^{\prime}}\left(1 / \sec ^{2}\right)$	10.71	3.72	26.5
$\mathrm{L}_{\delta_{r}^{\prime}}^{\prime}\left(1 / \sec ^{2}\right)$	14.37	2.86	12.97
$N_{\beta}^{\prime}(1 / \mathrm{sec})$	12.39	4.38	18.81
$\mathrm{N}_{\mathrm{p}}^{\prime}(1 / \mathrm{sec})$	0.324	0.0725	0.1341
$\mathrm{N}_{\mathrm{r}}^{\prime}(1 / \mathrm{sec})$	-0.382	-0.242	-0.386
$\mathrm{N}_{\delta_{a}^{\prime}}\left(1 / \sec ^{2}\right)$	-1.086	-0.277	-1.339
$\mathrm{N}_{\delta_{r}}^{\prime}\left(1 / \sec ^{2}\right)$	-4.71	-0.975	-1.989

where θ is the pitch angle of the aircraft, u is the perturbed linear velocity along the X -axis, w is the perturbed linear velocity along the Z -axis, q is the pitch rate (angular velocity about the Y -axis) and δ_{e} is the elevator surface deflection. See Figure 4.1.

The measurement parameters are θ, u, w so that the measurement equation assumes the form

$$
\left[\begin{array}{l}
\theta \tag{4.2}\\
u \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\theta \\
u \\
w \\
q
\end{array}\right]
$$

The system described by the above equations is an identifiable system in terms of Definition 2.17.

Figure 4.1. Aircraft axes definition

Example 4.1: Flight Condition 1, Takeoff

In this example use of the algorithm specified by Equation 3.38 will be explained step by step. Equations 4.1 and 4.2 are continuous equations of motion, consequently it will be necessary to discretize the model and place the resulting discrete equations in the canonical form gives by Equation 3.18. The continuous longitudinal equations have the form,

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \tag{4.3}
\end{align*}
$$

For flight condition 1 the A and B matrices are,
$A=\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 1.0 \\ -0.3072654 \mathrm{E} \mathrm{02} & -0.2900000 \mathrm{E}-01 & 0.7930000 \mathrm{E}-01 & -0.3747952 \mathrm{E} 02 \\ -0.9629114 \mathrm{E} 01 & -0.1585000 \mathrm{E} 00 & -0.3110000 \mathrm{E} 00 & 0.2885763 \mathrm{E} 03 \\ 0.2590000 \mathrm{E}-03 & 0.2900000 \mathrm{E}-04 & -0.5750000 \mathrm{E}-02 & -0.4197400 \mathrm{E} 00\end{array}\right]$
$B=\left[\begin{array}{c}0.0 \\ 0.0 \\ -0.1730000 \mathrm{E} \\ 02 \\ -0.2595519 \mathrm{E} \\ 01\end{array}\right]$

There are two modes of oscillation in the continuous case; the phugoid mode, which is a low frequency lightly damped mode and the short period mode, which is a high frequency heavily damped mode.

Choice of a sampling time of 0.783 seconds places the continuous poles in the $z-p l a n e$ so that there is approximately 12 samples per cycle of the short period mode. For a sampling time of 0.783 seconds the discrete equations have the following F and G matrices,
$F=\left[\begin{array}{cccc}0.1003290 \mathrm{E} \mathrm{01} & 0.6727690 \mathrm{E}-04 & -0.1344116 \mathrm{E}-02 & 0.5665131 \mathrm{E} \mathrm{00} \\ -0.2410219 \mathrm{E} \mathrm{02} & 0.9714125 \mathrm{E} 00 & 0.1078716 \mathrm{E} 00 & -0.2342473 \mathrm{E} 02 \\ -0.4428109 \mathrm{E} \mathrm{01} & -0.9057302 \mathrm{E}-01 & 0.4260424 \mathrm{E} 00 & 0.1417087 \mathrm{E} 03 \\ 0.1102219 \mathrm{E}-01 & 0.2275202 \mathrm{E}-03 & -0.2834095 \mathrm{E}-02 & 0.3751003 \mathrm{E} 00\end{array}\right]$
$G=\left[\begin{array}{cc}-0.1133112 \mathrm{E} & 01 \\ 0.4614477 \mathrm{E} & 02 \\ -0.2939646 \mathrm{E} & 03 \\ -0.7239227 \mathrm{E} & 00\end{array}\right]$

Using the linear transformation matrix A specified by Equation 3.23 the matrices F and G given in Equation 4.5 can be put into the canonical form required by the algorithm. The linear transformation matrix A is given by,
$A=\left[\begin{array}{cccc}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.1003290 \mathrm{E} 01 & 0.6727690 \mathrm{E}-04 & -0.1344116 \mathrm{E}-02 & 0.5665131 \mathrm{E} 00\end{array}\right]$

For a sampling time of 0.783 seconds, the canonical system matrices for flight condition 1 are,
$\mathscr{Y}=\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 1.0 \\ 0.1738291 \mathrm{E} \mathrm{02} & 0.9741944 \mathrm{E} \mathrm{00} & 0.5229372 \mathrm{E}-01 & -0.4134906 \mathrm{E} 02 \\ -0.2553931 \mathrm{E} \mathrm{03} & -0.1074018 \mathrm{E} 00 & 0.7622623 \mathrm{E} 00 & 0.2501421 \mathrm{E} 03 \\ -0.2564270 \mathrm{E}-01 & 0.3135588 \mathrm{E}-03 & -0.2122424 \mathrm{E}-02 & 0.1039389 \mathrm{E} 01\end{array}\right]$
$\mathscr{G}=\left[\begin{array}{c}-0.1133112 \mathrm{E} \\ 0 \\ 0.4614477 \mathrm{E} \\ 0 \\ -0.2937646 \mathrm{E} \\ 03 \\ -0.1148994 \mathrm{E} \\ 01\end{array}\right] \quad \mathscr{H}=\left[\begin{array}{llll}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0\end{array}\right]$
Application of the parameter identification procedure will be made with respect to identifying the parameters in Equation 4.7.

In order to implement Equation 3.38 the dimensions of the matrices, $S, A_{n^{*}}(k+1), B_{n^{*}}(k), \mathscr{P}, \overline{\mathrm{R}}_{\mathrm{n} *}(1), \overline{\mathrm{P}}_{\mathrm{n} *}(1)$, and $\overline{\mathrm{Q}}_{\mathrm{n} *}(0)$ must be known. In terms of the known system dimensions $n, p, r, n *$ the matrices have the following dimensions,

$$
\begin{aligned}
& S\left(n, p n^{*}\right) \\
& A_{n *}(k+1)\left(p n^{*}, n+r n *\right) \\
& B_{n *}(k)\left((p+r) n^{*}, n+r n^{*}\right) \\
& \mathscr{P}\left(n+r n^{*},(p+r) n^{*}\right) \\
& \bar{R}_{n *}(1)\left(p n^{*}, p n^{*}\right) \\
& \bar{P}_{n *}(1)\left(p n^{*}, r n^{*}\right) \\
& \bar{Q}_{n *}(0)\left(r n^{*}, r n^{*}\right)
\end{aligned}
$$

In order to start the algorithm the matrices $A_{n *}(k+1)$ and $B_{n *}(k)$ must first be constructed from the first $n+n *(r+1)$ input and output observations. Thereafter the algorithm is recursive in the sense that each additional observation updates $A_{n *}(k+1)$ and $B_{n *}(k)$ resulting in a sliding data window.

Flight conditions at takeoff were simulated using an IBM 360-65 computer. The initial state of the system was taken to be zero. Note that the choice of initial conditions is immaterial in the application of the algorithm. The computer simulation (see the Appendix) generated the output vector given a gaussian input having zero mean with variance of 0.05 radians squared as an elevator input via the triple ($\mathcal{F}, \mathcal{G}, \mathcal{K}$). The steady state convariance matrix of the output was computed from the equation

$$
\begin{aligned}
\mathrm{P}(\mathrm{k}+1) & =\mathscr{F} \mathrm{P}(\mathrm{k}) \mathscr{F}^{\mathrm{T}}+\mathscr{G} \mathrm{R}(\mathrm{k}) \mathscr{G}^{T} \\
\mathrm{P}(0) & =0
\end{aligned}
$$

and was used to calculate the amount of noise to be added to each output observation, the ratio of the variance of the observation to the variance of the added noise being the measure of S / N ratio. In evaluating the performance of the estimator with various signal to noise ratios, the normalized state error in properly identifying the system will be defined as

$$
\begin{equation*}
\text { State Error }=\frac{\|\mathrm{x}-\hat{\mathrm{x}}\|}{\|\mathrm{x}\|} \tag{4.8}
\end{equation*}
$$

where x is the state vector and \hat{X} is the state vector resulting from the estimated triple ($\hat{\mathscr{F}}, \hat{\mathscr{G}}, \hat{H}$) being driven by the identical input driving
the triple (FF,G,H). The absolute parameter errors in the elements of ($\frac{A}{5}, \mathscr{G}$) are defined by the following equations

$$
\begin{align*}
& \tilde{f}_{i j}=\left|f_{i j}-\hat{f}_{i j}\right| \\
& \tilde{g}_{i j}=\left|g_{i j}-\hat{g}_{i j}\right| \tag{4.9}
\end{align*}
$$

Given the input observations and output observations Equation 3.38 and Equation 3.14 were implemented in order to arrive at the estimated matrices $\hat{\mathscr{Y}}$ and $\hat{\mathscr{G}}$. Figure 4.2 shows the convergence rate of the state error for various signal to noise ratios. Tables 4.3, 4.4, and 4.5 tabulate the absolute parameter errors as a function of number of iterations.
4.2. Identification of the Lateral Equations of Motion of an Aircraft

The lateral equations of motion of an aircraft can be expressed as

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{\phi} \\
\dot{\mathrm{p}} \\
\dot{\mathrm{r}} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & \tan \theta_{0} & 0 \\
0 & \mathrm{~L}_{\mathrm{p}}^{\prime} & \mathrm{L}_{\mathrm{r}}^{\prime} & \mathrm{L}_{\beta}^{\prime} \\
0 & \mathrm{~N}_{\mathrm{p}}^{\prime} & \mathrm{N}_{\mathrm{r}}^{\prime} & \mathrm{N}_{\beta}^{\prime} \\
-\mathrm{g} \cos \theta_{0} \\
\mathrm{~V}_{\mathrm{T}_{\mathrm{O}}} & \frac{\mathrm{~W}_{0}}{\mathrm{~V}_{\mathrm{T}_{\mathrm{o}}}} & -\frac{\mathrm{U}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{T}_{\mathrm{o}}}} & \mathrm{Y}_{\mathrm{V}}
\end{array}\right]\left[\begin{array}{l}
\varphi \\
\mathrm{p} \\
\mathrm{r} \\
\beta
\end{array}\right]} \\
& +\left[\begin{array}{ll}
0 & 0 \\
L_{\delta_{a}}^{\prime} & L_{\delta_{r}}^{\prime} \\
N_{\delta_{a}}^{\prime} & \mathrm{N}_{\delta_{r}}^{\prime} \\
\mathrm{Y}_{\delta_{a}}^{*} & \mathrm{Y}_{\delta_{r}}^{*}
\end{array}\right]\left[\begin{array}{c}
\delta_{a} \\
\delta_{r}
\end{array}\right] \tag{4.10}
\end{align*}
$$

Here φ is the roll angle of the aircraft, p is the roll rate about the X-axis, r is the yaw rate about the Z-axis, β is the sideslip angle of the aircraft, δ_{a} is the aileron control surface deflection, and δ_{r} is the rudder deflection. Measureable parameters in the lateral case $\operatorname{are} \varphi, p$, and r so that the measurement equation becomes,

$$
\left[\begin{array}{l}
\varphi \tag{4.11}\\
\mathrm{p} \\
\mathrm{r}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\varphi \\
\mathrm{p} \\
\mathrm{r} \\
\beta
\end{array}\right]
$$

The lateral equations of motion represent an identifiable multiple input/multiple output system.

Example 4.2: Flight Condition 4, Power Approach
Using a sampling time of 0.318 seconds Equations 4.10 and 4.11 have the discrete time canonical triple,

$\mathscr{H}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$

Again our objective is to identify the unknown parameters in the triple ($\%$ convergence rate of the states error while Tables 4.6, 4.7, and 4.8 tabulate the parameter matrix error as a function of S / N ratio and number of iterations. Here both δ_{a} and δ_{r} are zero mean gaussian sequences having variances equal to 0.05 rad . squared.

In both the lateral and longitudinal simulations both the states error and parameter error show good correspondence with the actual states and the true parameters. The greater the signal to noise ratio the closer the identification with regard to number of iterations. The convergence rate for the noisy input/output observations compares favorably with the algorithms of Saridis and Stein (6) and Holmes (8). It should be noted that in the noise free case only one iteration is necessary in order to identify the unknown parameters.

Figure 4.2. Convergence rate for state error

Table 4.3. Absolute parameter error $S / N=20 \mathrm{db}$ (Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	0.4873559 E 02	0.1783069 E 02
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.9424786 E 00	0.9798733 E 00
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	0.1035570 E 01	$0.7490249 \mathrm{E}-01$
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	-0.4276985E 03	-0.4233175E 02
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} 03$	-0.1710916E 03	-0.2662779E 03
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	-0.3063951E 00	-0.1123203E 00
$\mathrm{f}_{33}=0.7622623 \mathrm{E} 00$	-0.3661576E 00	0.7694729 E 00
$\mathrm{f}_{34}=0.2501421 \mathrm{E} 03$	0.4935574 E 03	0.263837 E 03
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	-0.9594353E 00	-0.5888821E-01
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	-0.2934971E-02	0.2891652E-03
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	-0.6706337E-02	-0.2081408E-02
$\mathrm{F}_{44}=0.1039389 \mathrm{E} 01$	0.2805414 E 01	0.1079613 E 01
$g_{11}=-0.1133112 \mathrm{E} 01$	-0.1164553E 01	-0.1160064E 01
$g_{21}=0.4614477 \mathrm{E} 02$	0.1949300 E 03	0.5818665 E 02
$g_{31}=-0.2937646 \mathrm{E} 03$	-0.2946374E 03	-0.3134640E 03
$g_{41}=-0.1148994 \mathrm{E} 01$	-0.6775904E 00	-0.1059018E 01

100	150	200
0.1271905 E 02	0.1058821 E 02	0.1177326 E 02
0.9810518 E 00	0.9749529 E 00	0.9758507 E 00
0.7150866E-01	$0.6823299 \mathrm{E}-01$	0.5943013E-01
-0.3556995E 02	-0.3401416E 02	-0.3498680E 02
-0.2623206E 03	-0.2548507E 03	-0.2608132E 03
-0.1189027E 00	-0.1121118E 00	-0.1151139E 00
0.7660782 E 00	0.7552372 E 00	0.7621397 E 00
0.2576531 E 03	0.2501775E 03	0.2561238 E 03
-0.9667312E-01	-0.1012379E 00	-0.1002283E 00
$0.3117786 \mathrm{E}-03$	$0.3019081 \mathrm{E}-03$	$0.3029536 \mathrm{E}-03$
-0.1959381E-02	-0.2070169E-02	-0.2083909E-02
0.1102145 E 01	0.1114738 E 01	0.1113321 E 01
-0.1152311E 01	-0.1174831E 01	-0.1165389E 01
0.5405302 E 02	0.4982184 E 02	0.4860137E 02
-0.3026560E 03	-0.3038248E 03	-0.3014289E 03
-0.1055417E 01	-0.1128305E 01	-0.1127484E 01

Table 4.3. Absolute parameter error $\mathrm{S} / \mathrm{N}=20 \mathrm{db}$
(Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	0.3135268	0.0044778
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.0317208	0.0056739
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	9.8327628	0.2260877
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	3.8634944	0.0098269
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} \mathrm{03}$	0.0843015	0.0108848
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	0.1989933	0.0049185
$\mathrm{f}_{33}=0.7622623 \mathrm{E} \mathrm{00}$	0.3961047	0.0072106
$\mathrm{f}_{34}=0.2501421 \mathrm{E} \mathrm{03}$	0.2464153	0.0136966
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	9.3379260	0.3324551
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	2.6214122	0.0243936
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	0.4583913	0.0041016
$\mathrm{f}_{44}=0.1039389 \mathrm{E} \mathrm{01}$	0.1766025	0.0040224
$\mathrm{~g}_{11}=-0.1133112 \mathrm{E} \mathrm{01}$	0.0031441	0.0026952
$\mathrm{~g}_{21}=0.4614477 \mathrm{E} \mathrm{02}$	1.4878523	0.1204178
$\mathrm{~g}_{31}=-0.2937646 \mathrm{E} \mathrm{03}$	0.0008728	0.0186994
$\mathrm{~g}_{41}=-0.1148994 \mathrm{E} \mathrm{01}$	0.0471403	0.0089976

100	150	200
0.0466386	0.0679470	0.0560965
0.0068524	0.0007535	0.0016513
0.1921494	0.1593927	0.0713641
0.0577911	0.0733490	0.0636226
0.0069275	0.0005424	0.0054201
0.0115009	0.0047100	0.0077121
0.0038159	0.0070251	0.0001226
0.0075110	0.0000354	0.0059817
0.7103042	0.7573630	0.7458560
0.0017802	0.0116507	0.0106052
0.0163043	0.0052255	0.0038515
0.0062756	0.0075349	0.0073932
0.0019199	0.0041719	0.0032277
0.0790825	0.0367707	0.0245660
0.0088914	0.0100602	0.0076643
0.0093577	0.0020689	0.0021510

Table 4.4. Absolute parameter error $S / N=40 \mathrm{db}$ (Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	-0.1055713 E 03	0.1688423 E 02
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.7752862 E 00	0.9742421 E 00
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	0.4738272 E 00	$0.5491297 \mathrm{E}-01$
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	-0.8556041 E 02	-0.4091193 E 02
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} 03$	-0.1970058 E 03	-0.2571707 E 03
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	$-0.6831815 \mathrm{E}-01$	-0.1080211 E 00
$\mathrm{f}_{33}=0.7622623 \mathrm{E} 00$	0.5267756 E 00	0.7642420 E 00
$\mathrm{f}_{34}=0.2501421 \mathrm{E} 03$	0.2685217 E 03	0.2521441 E 03
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	-0.8300148 E 00	$-0.2927423 \mathrm{E}-01$
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	$-0.9852491 \mathrm{E}-03$	$0.3090531 \mathrm{E}-03$
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	$0.2564200 \mathrm{E}-03$	$-0.2115498 \mathrm{E}-02$
$\mathrm{f}_{44}=0.1039389 \mathrm{E} 01$	0.8698114 E 00	0.1043099 E 01
$\mathrm{~g}_{11}=-0.1133112 \mathrm{E} 01$	-0.1039588 E 01	-0.1135216 E 01
$\mathrm{~g}_{21}=0.4614477 \mathrm{E} 02$	0.9335898 E 02	0.4758389 E 02
$\mathrm{~g}_{31}=-0.2937646 \mathrm{E} 03$	-0.2716615 E 03	-0.2954451 E 03
$\mathrm{~g}_{41}=-0.1148994 \mathrm{E} 01$	-0.8216950 E 00	-0.1139294 E 01

100	150	200
0.1662231 E 02	0.1649466 E 02	0.1664903 E 02
0.9745724 E 00	0.9740636 E 00	0.9741390E 00
0.5448320E-01	0.5397441E-01	0.5308778E-01
-0.4047732E 02	-0.4039655E 02	-0.4054026E 02
-0.2568398E 03	-0.2553732E 03	-0.2554422E 03
-0.1081146E 00	-0.1075876E 00	-0.1077103E 00
0.7631284 E 00	0.7613840 E 00	0.7616247 E 00
0.2517447E 03	0.2502263 E 03	0.2502906 E 03
-0.3240891E-01	-0.3025507E-01	-0.2976996E-01
0.3124617E-03	0.3133196E-03	$0.3132415 \mathrm{E}-03$
-0.2105139E-02	-0.2119320E-02	-0.2121351E-02
0.1044951 E 01	0.1043865 E 01	0.1043382E 01
-0.1134556E 01	-0.1137140E 01	-0.1136320E 01
0.4708161 E 02	0.4664582 E 02	$0.4648771 E 02$
-0.2943747E 03	-0.2946602E 03	-0.2944324E 03
-0.1139659E 01	-0.1147680E 01	-0.1147318E 01

Table 4.4. Absolute parameter error $S / N=40 \mathrm{db}$ (Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	0.8818839	0.0049868
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.1989132	0.0000427
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	4.2153348	0.0261925
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	0.4421135	0.0043713
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} 03$	0.0583873	0.001776
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	0.0390837	0.0006193
$\mathrm{f}_{33}=0.7622623 \mathrm{E} 00$	0.2384867	0.0019797
$\mathrm{f}_{34}=0.2501421 \mathrm{E} 03$	0.0183796	0.0020020
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	8.0437210	0.0363153
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	0.6716903	0.0045057
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	0.1866004	0.0006926
$\mathrm{f}_{44}=0.1039389 \mathrm{E} 01$	0.0169578	0.0003710
$\mathrm{~g}_{11}=-0.1133112 \mathrm{E} 01$	0.0093524	0.0002104
$\mathrm{~g}_{21}=0.4614477 \mathrm{E} 02$	0.4721421	0.0143912
$\mathrm{~g}_{31}=-0.2937646 \mathrm{E} 03$	0.0221031	0.0016805
$\mathrm{~g}_{41}=-0.1148994 \mathrm{E} 01$	0.0327304	0.0009700

100	150	200
0.0076060	0.0093629	0.0073388
0.0003730	0.0001358	0.0000604
0.0218948	0.0168069	0.0079406
0.0087174	0.0095251	0.0084646
0.0014467	0.0000199	0.0000491
0.0007128	0.0001858	0.0003085
0.0008661	0.0008783	0.0006376
0.0016026	0.0000842	0.0001485
0.0676571	0.0461237	0.0412726
0.0010971	0.0002392	0.0003173
0.0017285	0.0003104	0.0001073
0.0005562	0.0004476	0.0003993
0.0001444	0.0004028	0.0003208
0.0093684	0.0050105	0.0034294
0.0006101	0.0008956	0.0006678
0.0009335	0.0001314	0.0001676

Table 4.5. Absolute parameter error $S / N=60 \mathrm{db}$ (Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	0.4731068 E 02	$0.1732810 \mathrm{E}^{02}$
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.1012240 E 01	0.9741938 E 00
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	-0.4628977E-01	0.5255852E-01
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	-0.3494458E 02	-0.4130054E 02
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} 03$	-0.1973942E 03	-0.2555774E 03
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	-0.3449265E-01	-0.1074597E 00
$\mathrm{f}_{33}=0.7622623 \mathrm{E} 00$	0.5629380 E 00	0.7624722 E 00
$\mathrm{f}_{34}=0.2501421 \mathrm{E} 02$	0.2651073 E 03	0.2503482 E 03
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	0.1217372 E 00	-0.2600948E-01
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	0.4974591E-03	$0.3130874 \mathrm{E}-03$
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	-0.2640043E-02	-0.2121701E-02
$\mathrm{f}_{44}=0.1039389 \mathrm{E} 01$	0.1079924 E 01	0.1039757 E 01
$\mathrm{g}_{11}=-0.1133112 \mathrm{E} 01$	-0.1143858E 01	-0.1133160E 01
$\mathrm{g}_{21}=0.4614477 \mathrm{E} 02$	0.3903571 E 02	0.4629178 E 02
$\mathrm{g}_{31}=-0.2937646 \mathrm{E} \mathrm{O3}$	-0.3104274E 03	-0.2939301E 03
$\mathrm{g}_{41}=-0.1148994 \mathrm{E} 01$	-0.1177808E 01	-0.1148017E 01

100	150	200
0.1730428 E 02	0.1728920 E 02	0.1730771 E 02
0.9742291 E 00	0.9741779 E 00	0.9741867E 00
0.5251513E-01	$0.5246514 \mathrm{E}-01$	0.5237398E-01
-0.4125944E 02	-0.4124832E 02	-0.4126639E 02
-0.2555446E 03	-0.2553899E 03	-0.2553932E 03
-0.1074691E 00	-0.1074158E 00	-0.1074282E 00
0.7623534 E 00	0.7621761 E 00	0.7621925 E 00
0.2503099 E 03	0.2501493 E 03	0.2501526 E 03
-0.2631496E-01	-0.2607573E-01	-0.2602280E-01
0.3134396E-03	0.3135430E-03	$0.3135338 \mathrm{E}-03$
-0.2120686E-02	-0.2122136E-02	-0.2122344E-02
0.1039937 E 01	0.1039810 E 01	0.1039755 E 01
-0.1133252E 01	-0.1133522E 01	-0.1133434E 01
0.4624008 E 02	0.4619871 E 02	0.4618012 E 02
-0.2938227E 03	-0.2938539E 03	-0.2938308E 03
-0.1148062E 01	-0.1148854E 01	-0.1148832E 01

Table 4.5. Absolute parameter error $S / N=60 \mathrm{db}$ (Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1738291 \mathrm{E} 02$	0.2992777	0.0005481
$\mathrm{f}_{22}=0.9741994 \mathrm{E} 00$	0.0380406	0.0000056
$\mathrm{f}_{23}=0.5229372 \mathrm{E}-01$	0.0600395	0.0026480
$\mathrm{f}_{24}=-0.4134906 \mathrm{E} 02$	0.0640448	0.0004852
$\mathrm{f}_{31}=-0.2553931 \mathrm{E} 03$	0.0579989	0.0001843
$\mathrm{f}_{32}=-0.1074018 \mathrm{E} 00$	0.0729091	0.0000579
$\mathrm{F}_{33}=0.7622623 \mathrm{E} 00$	0.1993243	0.0002099
$\mathrm{f}_{34}=0.2501421 \mathrm{E} 03$	0.0149652	0.0002061
$\mathrm{f}_{41}=-0.2564270 \mathrm{E}-01$	0.9609450	0.0036678
$\mathrm{f}_{42}=0.3135588 \mathrm{E}-03$	0.1839003	0.0004714
$\mathrm{f}_{43}=-0.2122424 \mathrm{E}-02$	0.0517619	0.0000723
$\mathrm{f}_{44}=0.1039389 \mathrm{E} 01$	0.0040535	0.0000368
$\mathrm{g}_{11}=-0.1133112 \mathrm{E} 01$	0.0010746	0.0000048
$\mathrm{g}_{21}=0.4614477 \mathrm{E} 02$	0.0710906	0.0014701
$\mathrm{g}_{31}=-0.2937646 \mathrm{E} 03$	0.0166628	0.0001655
$\mathrm{g}_{41}=-0.1148994 \mathrm{E} 01$	0.0028814	0.0000977

100	150	200
0.0007863	0.0009371	0.0007520
0.0000297	0.0000215	0.0000127
0.0022141	0.0017142	0.0008026
0.0008962	0.0010074	0.0008267
0.0001515	0.0000032	0.0000010
0.0000673	0.0000140	0.0000264
0.0000911	0.0000862	0.0000699
0.0001678	0.0000072	0.0000105
0.0067226	0.0043303	0.0038010
0.0001192	0.0000158	0.0000250
0.0001738	0.0000288	0.0000080
0.0000548	0.0000421	0.0000366
0.0000140	0.0000410	0.0000322
0.0009531	0.0005394	0.0003535
0.0000581	0.0000893	0.0000662
0.0000932	0.0000140	0.0000162

Figure 4.3. Convergence rate for state error

Table 4.6. Absolute parameter error $\mathrm{S} / \mathrm{N}=20 \mathrm{db}$ (Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	0.9197672E-01	$0.6337377 \mathrm{E}-01$
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.5695839 E 00	0.6851740 E 00
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	-0.6116086E-01	-0.3855333E-01
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	-0.4977766E-01	-0.5494304E-01
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	-0.1866323E 01	0.4182648 E 00
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	-0.6286525E 01	0.4934371 E 01
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	0.834515 E 00	0.1596312 E 01
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	-0.1033437E 00	-0.8359954E 00
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	-0.8851244E 00	-0.3701748E 00
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	-0.1219565E 00	0.3106321 E 01
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	0.5058761E-01	0.3735340 E 00
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	0.1472204 E 01	0.9236054 E 00
$\mathrm{g}_{11}=0.6551825 \mathrm{E} 00$	0.1836602 E 00	0.6995185 E 00
$\mathrm{g}_{12}=0.1850717 \mathrm{E} 00$	0.5960326 E 00	0.4686740 E 00
$\mathrm{g}_{21}=0.3037358 \mathrm{E}-01$	-0.7973780E-01	-0.6282792E-01
$\mathrm{g}_{22}=-0.1942935 \mathrm{E} 00$	0.1154847 E 01	-0.2869273E 00
$\mathrm{g}_{31}=0.2932957 \mathrm{E} 00$	0.3587494 E 00	0.6119337 E 00
$\mathrm{g}_{32}=0.1817910 \mathrm{E} 00$	-0.2362Gこ4E 02	0.1812687 E 01
$\mathrm{g}_{41}=0.2319299 \mathrm{E} 00$	-0.2189306E 00	0.5208593 E 00
$g_{42}=-0.5567527 \mathrm{E} 00$	-0.2302824E 01	0.4149459E-02

100	150	200
0.1128948 E 00	0.1297694 E 00	0.1382647 E 00
0.7984117 E 00	0.6594588 E 00	0.6428129 E 00
$-0.2491588 \mathrm{E}-01$	$-0.4132076 \mathrm{E}-01$	$-0.4316155 \mathrm{E}-01$
-0.1289739 E 00	-0.1445538 E 00	-0.1662999 E 00
0.4558469 E 00	0.1109714 E 00	$0.7904864 \mathrm{E}-01$
0.2286009 E 01	0.1164403 E 01	0.7821305 E 00
0.1275229 E 01	0.1140713 E 01	0.1093942 E 01
-0.4263071 E 00	$0.6404233 \mathrm{E}-01$	0.1909365 E 00
-0.2712713 E 00	-0.3512144 E 00	-0.3456622 E 00
0.2126775 E 01	0.1933759 E 01	0.1797702 E 01
0.2534050 E 00	0.2300993 E 00	0.2137816 E 00
0.1001318 E 01	0.1114797 E 01	0.1117543 E 01
0.6645506 E 00	0.7273659 E 00	0.7420682 E 00
0.2456186 E 00	0.2519700 E 00	0.2869519 E 00
$-0.1317074 \mathrm{E}-01$	$-0.1690940 \mathrm{E}-01$	$-0.2546823 \mathrm{E}-01$
-0.2818560 E 00	-0.2305601 E 00	-0.2148296 E 00
0.2612117 E 00	0.5419333 E 00	0.6107843 E 00
0.8786002 E 00	0.7355217 E 00	0.6814212 E 00
0.3729071 E 00	0.4350285 E 00	0.4575615 E 00
-0.5470779 E 00	-0.4903706 E 00	-0.4545567 E 00
0		

Table 4.6. Absolute parameter error $\mathrm{S} / \mathrm{N}=20 \mathrm{db}$ (Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	0.0882254	0.1168284
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.0445216	0.0329626
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	5.9891905	3.7284375
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	0.1855092	0.1803438
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	1.7246365	0.2765783
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	62.2541380	48.7325980
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	0.1581190	0.6036780
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	0.0802741	0.6523776
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	0.6083544	0.0934048
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	0.1502760	0.1481604
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	0.1415886	0.1813577
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	0.040945	0.0147653
$\mathrm{~g}_{11}=0.6551825 \mathrm{E} 00$	0.4715223	0.0443360
$\mathrm{~g}_{12}=0.1850717 \mathrm{E} 00$	0.4109609	0.2836023
$\mathrm{~g}_{21}=-0.3037358 \mathrm{E}-01$	0.4936422	0.324534
$\mathrm{~g}_{22}=-0.1942935 \mathrm{E} 00$	0.9605535	0.4812205
$\mathrm{~g}_{31}=0.2932957 \mathrm{E} 00$	0.0654537	0.3186380
$\mathrm{~g}_{32}=0.1817910 \mathrm{E} 00$	23.444749	1.6308960
$\mathrm{~g}_{41}=0.2319299 \mathrm{E} 00$	0.0136239	0.2889294
$\mathrm{~g}_{42}=-0.5567527 \mathrm{E} 00$	1.7460713	0.5526032

100	150	200
0.0673074	0.0504328	0.0419375
0.0216388	0.0355341	0.0371987
2.3646925	4.0051805	4.1892595
0.1063130	0.0907331	0.0689870
0.3141604	0.0307151	0.0626378
22.2489780	11.0329180	7.2101930
0.2825950	0.1480790	0.1013080
0.2426893	0.1195554	0.0073187
0.0054987	0.0744444	0.0688922
0.0502058	0.0309042	0.0172985
0.0612287	0.0379230	0.0216053
0.0069941	0.0043538	0.0046284
0.0093681	0.0721834	0.0868857
0.0605469	0.0668983	0.1018802
0.1720284	0.1346418	0.0490535
0.0875625	0.0362666	0.0205361
0.0320840	0.2486376	0.3174886
0.6968092	0.5537307	0.1996302
0.1409772	0.2030986	0.2256316
0.0096748	0.0663821	0.1021960
		0

Table 4.7. Absolute parameter error $S / N=40 \mathrm{db}$ (Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	-0.9352959E-01	0.1712311 E 00
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.5065932E-01	0.1010618 E 01
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	-0.1066611E 00	$0.7583325 \mathrm{E}-03$
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	$0.9207415 \mathrm{E}-01$	-0.2241354E 00
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	-0.1866290E 01	0.1517157 E 00
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	-0.7050973E 01	-0.1564184E 00
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	0.2353890 E 00	0.9816096 E 00
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	0.2450219E 01	0.1719362 E 00
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	-0.8279577E 00	-0.2830616E 00
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	-0.2784200E 00	0.1644505 E 01
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	-0.1867689E-01	0.1948524 E 00
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	0.1712254 E 01	0.1069848 E 01
$\mathrm{g}_{11}=0.6551825 \mathrm{E} 00$	0.2754267E 00	0.6538140 E 00
$\mathrm{g}_{12}=0.1850717 \mathrm{E} 00$	0.6496938 E 00	0.2032160 E 00
$\mathrm{g}_{21}=-0.3037358 \mathrm{E}-01$	-0.1266129E 00	-0.3090370E-01
$\mathrm{g}_{22}=-0.1942935 \mathrm{E} 00$	-0.2992409E 00	-0.1991860E 00
$\mathrm{g}_{31}=0.2932957 \mathrm{E} 00$	-0.1136373E 01	0.3084099 E 00
$\mathrm{g}_{32}=0.1817910 \mathrm{E} 00$	-0.1195643E 01	0.2934887E 00
$\mathrm{g}_{41}=0.2319299 \mathrm{E} 00$	-0.7085839E 00	0.2509113 E 00
$\mathrm{g}_{42}=-0.5567527 \mathrm{E} 00$	-0.5079149E-01	-0.5228165E 00

100	150	200
0.1768231 E 00	0.1767030 E 00	0.1770769 E 00
0.1015528 E 01	0.1005660 E 01	0.1010445 E 01
$0.1334709 \mathrm{E}-02$	$0.1735225 \mathrm{E}-03$	$0.7534535 \mathrm{E}-03$
-0.2307895E 00	-0.2302438E 00	-0.2316678E 00
0.1688386 E 00	0.1474903 E 00	0.1328972 E 00
-0.6290429E-01	-0.5250417E-01	-0.6057030E-01
0.9925670E 00	0.9938119 E 00	0.9891710E 00
0.1491558 E 00	0.1696958 E 00	0.1932473 E 00
-0.2760488E 00	-0.283323E 00	-0.2836822E 00
0.1620396 E 01	0.1619791 E 01	0.1629985E 01
0.1917800 E 00	0.1916885E 00	0.1928972 E 00
0.1068915 E 01	$0.1077265 E 01$	0.1076626 E 01
0.6545367 E 00	0.6605098 E 00	0.6624719E 00
0.1902039 E 00	0.1909232 E 00	0.1948902 E 00
-0.2882288E-01	-0.2643396E-01	-0.2610679E-01
-0.2012346E 00	-0.1961063E 00	-0.1936863E 00
0.2899998 E 00	0.3092488 E 00	0.3145242 E 00
0.2448891 E 00	0.2329836 E 00	0.2229467E 00
0.2437884 E 00	0.2502200E 00	0.2545182 E 00
-0.5568893E 00	-0.5501817E 00	-0.5452804E 00

Table 4.7. Absolute parameter error $S / N=40 \mathrm{db}$ (Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	0.0866726	0.0089711
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.0964140	0.0004182
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	10.5392145	0.0510622
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	0.1432127	0.0111515
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	1.7246035	0.0100292
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	69.8986100	0.9530640
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	0.7572450	0.0110244
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	2.2666012	0.0116816
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	0.5511877	0.0062916
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	0.1346297	0.0019788
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	0.1734994	0.0026761
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	0.0640995	0.0001411
$\mathrm{~g}_{11}=0.6551825 \mathrm{E} 00$	0.3797558	0.0013685
$\mathrm{~g}_{12}=0.1850717 \mathrm{E} 00$	0.4646211	0.0181443
$\mathrm{~g}_{21}=-0.3037358 \mathrm{E}-01$	0.9623932	0.0053012
$\mathrm{~g}_{22}=-0.1942935 \mathrm{E} 00$	0.1049474	0.0048925
$\mathrm{~g}_{31}=0.2932957 \mathrm{E} 00$	0.8430773	0.0151142
$\mathrm{~g}_{32}=0.1817910 \mathrm{E} 00$	0.9377733	0.1116977
$\mathrm{~g}_{41}=0.2319299 \mathrm{E} 00$	0.4766540	0.0189814
$\mathrm{~g}_{42}=-0.5567527 \mathrm{E} 00$	0.5059612	0.0339362

100	150	200
0.0033791	0.0034992	0.0031253
0.0000728	0.0009140	0.0004355
0.0065754	0.1095432	0.0515501
0.0044974	0.0050431	0.0036191
0.0271521	0.0058038	0.0087893
0.0179229	0.0860783	0.0054090
0.0000670	0.0011779	0.0034630
0.0344620	0.0139220	0.0096295
0.0007212	0.0065530	0.0069122
0.0004321	0.0004926	0.0005268
0.0003963	0.0004878	0.0007209
0.0002344	0.0006006	0.0005367
0.0008155	0.0053273	0.0072894
0.0051322	0.005815	0.0098185
0.0155070	0.0393962	0.0426679
0.0069411	0.0018128	0.0006072
0.0032977	0.0159531	0.0212285
0.0630981	0.0511926	0.0411557
0.0118585	0.0182901	0.0225883
0.001366	0.0065710	0.0114723

Table 4.8. Absolute parameter error $S / N=60 \mathrm{db}$
(Estimated parameter)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	0.1915455 E 00	0.1793402 E 00
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.1055080 E 01	0.1014551 E 01
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	$0.5881634 \mathrm{E}-02$	0.1238046E-02
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	-0.2493294E 00	-0.2342266E 00
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	0.2188832 E 00	0.1422643E 00
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	0.2207499 E 00	-0.7447994E-01
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	$0.1027257 E 01$	0.9910787E 00
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	0.7543070E-01	0.1831969E 00
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	-0.2787657E 00	-0.2774199E 00
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	0.1622667 E 01	0.1625993 E 01
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	0.1922904 E 00	0.1923605 E 00
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	$0.1071183 E 01$	0.1071205 E 01
$\mathrm{g}_{11}=0.6551825 \mathrm{E} 00$	0.6559781 E 00	0.6550538 E 00
$\mathrm{g}_{12}=0.1850717 \mathrm{E} 00$	0.1803694 E 00	0.1868948 E 00
$\mathrm{g}_{21}=-0.3037358 \mathrm{E}-01$	-0.1037306E-01	-0.3043761E-01
$\mathrm{g}_{22}=-0.1942935 \mathrm{E} 00$	-0.2024156E 00	-0.1947940E 00
$\mathrm{g}_{31}=0.2932957 \mathrm{E} 00$	0.4239553 E 00	0.2952656 E 00
$g_{32}=0.1817910 \mathrm{E} 00$	-0.1374497E-01	0.1933669 E 00
$\mathrm{g}_{41}=0.2319299 \mathrm{E} 00$	0.2637431 E 00	0.2338970E 00
$g_{42}=-0.5567527 \mathrm{E} 00$	-0.6156793E 00	-0.5533030E 00

100	150	200
0.1799141 E 00	0.1798899 E 00	0.1799234 E 00
0.1015147 E 01	0.1014219 E 01	0.1014722 E 01
$0.1308154 \mathrm{E}-02$	$0.1199069 \mathrm{E}-02$	$0.1259977 \mathrm{E}-02$
-0.2349169E 00	-0.2348485E 00	-0.2349812E 00
0.1442162 E 00	0.1422630 E 00	0.1407295 E 00
-0.6415616E-01	-0.6148079E-01	-0.6512843E-01
0.9922864 E 00	0.9926044 E 00	0.9921603 E 00
0.1806001 E 00	0.1823330 E 00	0.1847126 E 00
-0.2767245E 00	-0.2774603E 00	-0.2774664E 00
0.1623640 E 01	0.1623 .67 E 01	0.1625138 E 01
0.1920601 E 00	0.1920843 E 00	0.1922357E 00
0.1071103 E 01	0.1071941 E 01	0.1071807 E 01
0.6551207 E 00	0.6556878 E 00	0.6559048 E 00
0.1855783 E 00	0.1855941 E 00	0.1860533 E 00
-0.3023841E-01	-0.2997727E-01	-0.2993886E-01
-0.1949744E 00	-0.1944526E 00	-0.1942225E 00
0.2931283 E 00	0.2948250E 00	0.2954313 E 00
0.1880716 E 00	0.1867296 E 00	0.1858837 E 00
0.2331341 E 00	0.2337134 E 00	0.2341834 E 00
-0.5567703E 00	-0.5562173E 00	-0.5555951E 00

Table 4.8. Absolute parameter error $\mathrm{S} / \mathrm{N}=60 \mathrm{db}$ (Absolute error)

Parameter/Iteration	1	50
$\mathrm{f}_{21}=0.1802022 \mathrm{E} 00$	0.0113433	0.0008620
$\mathrm{f}_{22}=0.1014800 \mathrm{E} 01$	0.0040280	0.0000249
$\mathrm{f}_{23}=0.1268955 \mathrm{E}-02$	0.4612679	0.0030909
$\mathrm{f}_{24}=-0.2352869 \mathrm{E} 00$	0.0140425	0.0010603
$\mathrm{f}_{31}=0.1416865 \mathrm{E} 00$	0.0771967	0.0005478
$\mathrm{f}_{32}=-0.6111120 \mathrm{E}-01$	1.5963870	0.1336874
$\mathrm{f}_{33}=0.9926340 \mathrm{E} 00$	0.0346230	0.0015553
$\mathrm{f}_{34}=0.1836178 \mathrm{E} 00$	0.1081871	0.0004209
$\mathrm{f}_{41}=-0.2767700 \mathrm{E} 00$	0.0019957	0.0006499
$\mathrm{f}_{42}=0.1624717 \mathrm{E} 01$	0.0002380	0.0001276
$\mathrm{f}_{43}=0.1921763 \mathrm{E} 00$	0.0001141	0.0001842
$\mathrm{f}_{44}=0.1071259 \mathrm{E} 01$	0.0000076	0.0000054
$\mathrm{~g}_{11}=0.6551825 \mathrm{E} 00$	0.0007956	0.0001287
$\mathrm{~g}_{12}=0.1850717 \mathrm{E} 00$	0.0047023	0.0018231
$\mathrm{~g}_{21}=-0.3037358 \mathrm{E}-01$	0.2000052	0.0006403
$\mathrm{~g}_{22}=-0.1942935 \mathrm{E} 00$	0.0081221	0.0005005
$\mathrm{~g}_{31}=0.2932957 \mathrm{E} 00$	0.1306596	0.0019699
$\mathrm{~g}_{32}=0.1817910 \mathrm{E} 00$	0.1680460	0.0115759
$\mathrm{~g}_{41}=0.2319299 \mathrm{E} 00$	0.0318132	0.0019671
$\mathrm{~g}_{42}=-0.5567527 \mathrm{E} 00$	0.0589266	0.0034497

100	150	200
0.0002881	0.0003123	0.0002788
0.0000347	0.0000581	0.0000078
0.0039199	0.0069886	0.0008978
0.0003700	0.0004384	0.0003057
0.0025267	0.0005765	0.0009570
0.0304496	0.0036959	0.0401723
0.0003476	0.0000296	0.0004737
0.0030177	0.0012848	0.0010948
0.0000455	0.0006903	0.0006964
0.0001077	0.0000850	0.0000421
0.0001162	0.0000920	0.0000594
0.0000156	0.0000682	0.0000548
0.0000618	0.0005053	0.0007223
0.0005066	0.0005224	0.0009816
0.0013517	0.0039631	0.0043472
0.0006809	0.0001591	0.0000710
0.0001674	0.0015293	0.0021356
0.0062806	0.0049386	0.0040927
0.0000176	0.0017835	0.0022535
	0.0005354	0.0011576
0		
0	0	0

5.0. CONCLUSIONS

Through analysis of the structure of linear systems criteria have been obtained that specify requirements for the parameter identification of multiple input/multiple output systems from input/output observations. It has been shown that the compostion of a multiple input/multiple output system can be uniquely determined if the system is a minimal realization and is cyclic.

A canonical form.for multiple input/multiple output systems has been developed that allows for direct parameter identification solely from input/output data. The transformation matrix associated with the multiple input/multiple output canonical form has also been derived for a large class of systems.

In the case of noise corrupted input/output observations an algorithm is presented that yields consistent estimates of the system parameters. Application of the algorithm has been made in estimating parameters in both the longitudinal and lateral equations of motion of an aircraft under simulated flight conditions.

The advatages in using the developed algorithm are:

1) input/output data are readily available
2) no a priori estimates of the identifiable parameters are needed
3) state estimation is not required nor any parameter covariance matrix needed
4) computation can be on-line

Further work in the area of identification of linear time-varying systems may prove fruitful. Another area of further endeavor is
that of parameter estimation from noisy observations where removal of the requirement of knowledge of the noise statistics in the proposed algorithm is extremely desirable.

6.0. LITERATURE CITED

1. Ho, B. L., "On Effective Construction of Realizations from InputOutput Description," Ph.D. Dissertation, Stanford University, Stanford, Calif. 1965.
2. Gopinath, B., "On the Identification of Linear Time-Invariant Systems From Input-Output Data," Bell System Technical Journal, Vol. 48, May-June 1969, pp. 1101-1113.
3. Budin, M. A., "Minimal Realizations of Discrete Linear Systems from Input-Output Observations," IEEE Transactions on Automatic Control, Vol. AC-16, No. 5, Oct. 1971, pp. 395-401.
4. Nieman, R. E., Fisher, D. G., and Seborg, D. E., "A Review of Process Identification and Parameter Estimation Techniques," International Journal of Control, Vol. 13, No. 2, 1971, pp. 209-264.
5. Steiglitz, K., and McBride, L. E., "Technique for the Identification -f Lincar Systems," IEEE Transactions on Automatic Control, Vol. AC-10, No. 4, October 1965, pp. 461-464.
6. Saridis, G. N., and Stein, G., 'Stochastic Approximation Algorithms for Linear Discrete-Time System Identification," IEEE Transactions on Automatic Control, Vol. AC-13, No. 5, October 1968, pp. 515-523.
7. Sakrison, David J., "The Use of Stochastic Approximation to Solve the System Identification Problem," IEEE Transactions on Automatic Control, Vol. AC-12, No, 5, October 1967, pp.563-567.
8. Holmes, Jack K., "Two Stochastic Approximation Procedures to Identifying Linear Systems," IEEE Transactions on Automatic Control, Vol. AC-14, No. 3, June 1969, pp. 292-295.
9. Nea1, C. B., and Bekey, G. A., "Estimation of the Parameters of Sampled-Data Systems by Means of Stocizastic Approximation," International Journal of System Science, 1970, Vol. 1, No. 1, pp. 63-74.
10. Wong, Kwan Y., and Polak, Elijah, "Identification of Linear Discrete Time Systems Using the Instrumental Variable Method," IEEE Transactions on Automatic Control, Vol. AC-12, No. 6, December 1967, pp. 707-718.
11. Tretter, Steve A., "Pulse-Transfer Function Identification Using Discrete Orthonormal Sequences," IEEE Transactions on Audio and Electroacoustics, Vol. AU-18, No. 2, June 1970, pp. 184-187.
12. Kalman, R. E., and Bucy, R. S., "New Results in Linear Filtering and Prediction Theory," Transactions ASME, 83D, March 1961, pp. 95-108.
13. Kopp, R. E., and Orford, R. J., "Linear Regression Applied to System Identification for Adaptive Control Systems," AIAA Journal, October 1963, pp. 2300-2306.
14. Denery, Dallas G., "An Identification Algorithm That is Insensitive to Initial Parameter Estimates," AIAA Journal, Vol. 9, No. 3, March 1971, pp. 371-377.
15. Kalman, R. E., "Mathematical Description of Linear Dynamical Systems," J.S.I.A.M. Control, Vol. 1, No. 2, 1963, pp. 152-192.
16. Kalman, R. E., "Algebraic Aspects of the Theory of Dynamical Systems," in Differential Equations and Dynamical Systems, J. K. Hale and J. P. LaSalle (eds.), Academic Press, New York, pp. 133-146.
17. Kalman, R. E., "Algebraic Structure of Linear Dynamical Systems, I. The Module of $\Sigma, "$ Proceedings of the National Academy of Sciences, Vol. 54, 1965, pp. 1503-1508.
18. Kalman, R. E., "Advanced Theory of Linear Systems," Part Four in Topics in Mathematical System Theory, Kalman, R. E., Falb, P. I., and Arbib, M. A., McGraw-Hill, New York, 1969.
19. Wymore, A. Wayne., "A Mathematical Theory of System Engineering The Elements," John Wiley and Sons, Inc. New York, 1967.
20. Zeiger, Paul, "Ho's Algorithm, Commutative Diagrams, and the Uniqueness of Minimal Linear Systems," Information and Control, Vol. 11, 1967, pp. 71-79.
21. Lipschutz, Seymour, Linear Algebra, Mc-Graw Hill, New York, 1968.
22. Luenberger, D. G., "Canonical Forms for Linear Multivariable Systems," IEEE Transactions on Automatic Contro1, Vol. AC-12, No. 3, June 1967, pp. 290-293.
23. Vogt, W. G., and Gunderson, R. W., "Canonical Realizations," Proceedings of the First Asilomar Conference on Circuits and Systems, Vol. 1, 1967, pp. 782-790.
24. Hoffman, K., and Kange, R., Linear Algebra Second Edition, PrenticeHall, Inc., Englewood Cliffs, New Jersey, 1971.
25. Gopinath, B., "On the Identification and Control of Linear Systems", Mh.D. Dissertation, Stanford University, Stanford, California, June 1968.
26. Budin, M. A., "Parameter Identification and State Estimation for Linear Systems," Ph.D. Dissertation, Stanford University, Stanford, California, January 1970.
27. Teper, G. L., "Aircraft Stability and Control Data," NASA CR-96008, April 1969.

7.0. ACKNOWLEDGMENTS

The author would like to acknowledge the help and guidance given to him by his major professor and co-chairman, Dr. R. G. Brown and Dr. C. J. Herget, respectively. The comments and encouragement of Professor A. N. Michel are especially appreciated. Special thanks goes to Dr. L. K. Seversike for his suggestions in the field of aeronautics.

The author expresses his gratitude to the Honeywell Corporation for providing him with a fellowship and financial support while preparing this document. Financial support for the computer computation was provided by the Office of Naval Research through the funds allocated to Project Themis under contract N00014-68-A-0162.

Finally, my wife, Margaret, whose infinite patience and encouragement surely is without peer.

8.0. APPENDIX

This computer program has been written in Fortran IV with all needed subroutines contained within the program. The program directly implements Equation 3.38 and outputs the estimated matrices F and G. In addition the program can be used to generate input/output data via the subroutine Model. If input/output data are available the subroutine Model can be modified in order to allow for direct utilization of these data.

In order to use the program appropriate matrix arrays must be specified. Dimension statements must be placed in the Main, Block Data and Model routines, all other subroutines utilize object-time dimensions.

The experienced programmer will have little difficulty in determining the appropriate matrix dimensions given the program listing for the simulation of the lateral equations of motion given in Section 4 of this dissertation once he has reviewed the program.

```
    IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
    DIMENSION U(2),W(4),X(4),Y(3),Z(8),NSIG(2),IN(2)
    l,F(4,4),G(4,2),H(3,4),A(4,4),B(4,2),C(4,2),D(4,4)
    2, ASTAR(6,8), BSTAR(10,8), BSTAR1(6,8),BSTAR2(4,8),FR(4,8)
    3,YTEMP(48),UTEMP(80),USTORE(4),YSTORE(6),S(4,6),SS(8,10),SST(10,8)
    4,BSTART( 8, 10), BBSTAR(10,10),ABSTAR(6,10),ASTORE(6,10),BSTORE(10,10
    5), CSTORE(4,10),DSTORE(4,8),ESTORE(8,10),FSTORE (8,8)
    DIMENSION GSTORE (4,8),HSTORE(6,8),FI(4,4),GI(4,2)
    DIMENSION COV1(8,8),COV 2(4,8)
    REAL*8 MU,NU,XI(4),ERR(4)
    REAL*4 SIGMA1(2),SIGMA2(3)
    EQUIVALENCE (UTEMP(1),BSTAR(1),SST(1)),(YTEMP(1),HSTORE(1))
    1,(BSTART(1),SS(1)),(ASTORE(1),CSTORE(1),B(1))
    2,(BSTORE(1),ESTORE(1),C(1)),(FSTORE(1),GSTORE(1),D(1)),(S(1),Al1))
    COMMON /LCI/U,W,X,Y,Z,NSIG,IN/LC2/TT,K
    NAMELIST/DIMEN/N,P,R,RANKH,T/PARAM/F,G,H,NSIG,IN
    NAMELIST/STAT/SIGMA1,SIGMA2,COV1,COV2,NCOUNT
    DATA P1,P2/2*1/,XI/4*O:0DO/
    READ(5,DIMEN)
    READ(5,PARAM)
    READ(5,STAT)
    WRITE(6,100)
    FORMAT('1 ..... THE STATE TRANSITION MATRIX IS .....')
    DO 101 I=1,N
    WRITE(6,102) (F(I,J),J=1,N)
    FORMAT(: ',8(D14.7,2X))
    WRITE (6,103)
    FORMAT('0 ..... THE INPUT MATRIX IS .....')
    DO 104 I=1,N
104 WRITE(6,102) (G(I,J),J=1,R)
    WRITE(6,105)
    FORMAT('O ..... THE DUTPUT MATRIX IS ......')
    DO 106 I=1,P
106 WRITE(6,102) (H(I,J),J=1,N)
C ..... CALCULATE MATRIX DIMENSIONS .....
    PADOR = P + R
    NSTAR =N - RANKH + 1
```

```
    PNSTAR = P*NSTAR
    RNSTAR = R*NSTAR
    PRSTAR = PNSTAR + RNSTAR
    NRSTAR = N + RNSTAR
    L=N + NSTAR*(R+1)
    LM1 = L - l
    LP=L*P
    LR=L*R
    CALL MODEL(F,G,H,N,P,R)
C ...... FORM VECTOR OF INPUT & OUTPUT OBSERVATIONS ......
    DO 111 K=1,L
    TT=(K-1)*T
    CALL MODEL(F,G,H,N,P,R)
    DO 109 I=1,P
    YTEMP(P1)=Y(I) + MU(SIGMA2,I)
109 Pl=P1 + 1
    DO 110 I=1,R
    UTEMP(P2)=U(I) + NU(SIGMA1,I)
110 P2 = P2 + 1
111 CONTINUE
    CALL MATFOR(YTEMP,ASTAR,PNSTAR,NRSTAR,P,P,LP)
    CALL MATFOR(YTEMP,BSTAR1,PNSTAR,NRSTAR,P,O,LP)
    CALL MATFOR(UTEMP,BSTAR2,RNSTAR,NRSTAR,R,O,LR)
    DO 112 I=1,PNSTAR
    J=LP}-PNSTAR+
112 YSTORE(I)=YTEMP(J)
    DO 113 I=1,RNSTAR
    J=LR-RNSTAR+1
    USTORE(I)=UTEMP(J)
    CALL BFORM(BSTAR1,BSTAR2,BSTAR,PNSTAR,NRSTAR,RNSTAR,PRSTARI
    DO 200 ICRM=1,NCOUNT
    WRITE(6,114)
114 FORMAT('O ..... THE MATRIX OF OUTPUT OBSERVATIONS IS ......')
    DO 115 I=1,PNSTAR
    WRITE(6,102) (ASTAR(I,J),J=1,NRSTAR)
    WRITE(6,116)
116 FORMAT('0 ..... THE MATRIX OF INPUT/OUTPUT OBSERVATIONS IS ....')
```

```
        DO 117 ;
117 WRITE\6,
    ...... II
    CALL TRA
    CALL MA:
    CALL MAI
    SCA = 1.
    IFIICRM.
    CALL MATA
    CALL SCAM:
    CALL MATADUIUU,ORE,BBSTAR,BBSTAR,PRSTAR,PRSTAR
    CALL SCAMAT(SCA,BBSTAR,BBSTAR,PRSTAR,PRSTAR)
1181 CALL SMATRXIS,SS,N,PNSTAR,NRSTAR,PRSTARI
    CALL TRNSP?(SS,S'ST,NRSTAR,PRSTAR)
    CALL MATMLT(S,ASSTAR,CSTORE,N,PNSTAR,PRSTAR)
    CALL MATMLT(CSTORE,SST,DSTORE,N,PRSTAR,NRSTAR)
    CALL MATSUB(ISTORE,COV2,OSTORE,N,NRSTAR)
    CALL MATMIT(SS,BBSTAR,ESTORE,NRSTAR,PRSTAR,PRSTAR)
    CALL MATMLT(ESTORE,SST,FSTORE,NRSTAR,PRSTAR,NRSTAR)
    CALL MATSUB(FSTORE,COV1,FSTORE,NRSTAR,NRSTAR)
    CALL MATINV&FSTORE,NRSTAR,NRSTAR,1.OD-20,DETER)
    IF(DETER.EQ.O.0) GO TO 200
    CALL MATMLT(DSTORE,FSTORE,FR,N,NRSTAR,NRSTAR)
    WRITE(6,118)
118 FORMAT('0 ..... THE IDENTIFIED MATRIX (F,R) IS .....'')
    DO 119 I =1,N
    WRITE(6,IO2) (FR(I,J),J=1,NRSTAR)
    ..... DETERMINATION OF F,G .....
    WRITE(6,120)
    FORMAT('0 ..... THE IDENTIFIED STATE TRANSITIDN MATRIX IS .....'')
    OD 121 I=1,N
    WRITE(6,102) (FR(I,J),J=1,N)
    CALL MATFG(A,B,C,D,FI,GI,FR,N,R,NRSTAR,RNSTȦR)
    WRITE{6,122)
    FORMAT('0 ..... THE IDENTIFIED INPUT MATRIX IS ....."')
    OO 123 I=1,N
    WRITE(6,102) (GI(I,J),J=1,R)
```

```
    IF(ICRM.EQ.NCOUNT) STOP
    SCA = 1.0/SCA
    CALL SCAMAT{SCA,ABSTAR,ABSTAR,PNSTAR,PRSTAR)
    CALL SCAMAT(SCA,BBSTAR,BBSTAR,PRSTAR,PRSTAR)
    CALL MATEQ(ABSTAR,ASTORE,PNSTAR,PRSTAR)
    CALL MATEQ(BBSTAR,BSTORE,PRSTAR,PRSTAR)
    ..... UPDATE BSTAR2 .....
    CALL SORTKY(Z,NRSTAR,1)
    CALL CSORT(BSTAR2,Z,GSTORE,RNSTAR,NRSTAR)
    CALL MATEQ(GSTORE,BSTAR2,RNSTAR,NRSTAR)
    CALL EXCOL(BSTAR2,USTORE,NRSTAR,RNSTAR,NRSTAR)
    ..... UPDATE BSTARI ......
    CALL MATEQ(ASTAR,BSTAR1,PNSTAR,NRSTAR)
C ..... UPDATE BSTAR .....
    CALL BFORM(BSTAR1,BSTAR2,BSTAR,PNSTAR,NRSTAR,RNSTAR,PRSTAR)
    ..... UPDATE YSTORE & USTORE ......
    K=K + 1
    TT={K-1 )*T
    CALL MATEQ(X,XI,N,1)
    CALL MODEL(F,G,H,N,P,R)
    CALL MATVEC(FI,XI,Z,N,N)
    CALL MATVEC(GI,U,W,N,R)
    CALL VECADD(Z,W,XI,N,N)
    CALL MATSUB{X,XI,ERR,N,I)
    CALL VECLEN(ERR,ERROR,N)
    CALL VECLEN(X,XLEN,N)
    ERROR=ERROR/XLEN
    XICRM=DFLOAT (ICRM)
    WRITE(6,300) ICRM,TT,ERROR
    FORMAT('O AT ITERATION#',I3,' AND REAL TIME =',F10.5,' THE NORMALI
1ZIED ERROR IS'.D15.7)
    WRITE(7,102) ERROR,XICRM,TT
    CALL SORTKY(Z,PNSTAR,P)
    CALL RSORT(YSTORE,Z,HSTCRE,PNSTAR,1)
    CALL VECEQ(HSTORE,YSTORE,PNSTAR)
    CALL SORTKY(Z,RNSTAR,R)
    CALL RSORT(USTORE,Z,GSTORE,RNSTAR,1)
```

```
    CALL VECEQ(GSTORE,USTORE,RNSTAR)
    DO 124 I=1,P
    J=PNSTAR-P+I
    YSTORE(J)=Y(I) + MU(SIGMA2,I)
    DO 125 I=l,R
    J=RNSTAR-R+I
    USTORE(J)=U(I) + NU(SIGMAI,I)
    ..... UPDATE ASTAR
        CALL SORTKY(Z,NRSTAR,I)
        CALL CSORT(ASTAR,Z,HSTORE,PNSTAR,NRSTAR)
        CALL MATEQ(HSTORE,ASTAR,PNSTAR,NRSTAR)
        CALL EXCOL(ASTAR,YSTORE,NRSTAR,PNSTAR,NRSTAR)
        CONTINUE
        STOP
        END
        BLOCK DATA
        IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
        DIMENSION U(2),W(4),X(4),Y(3),Z(8),NSIG(2),IN(2)
        COMMON /LCI/U,W,X,Y,Z,NSIG,IN
        DATA U,W/6*0.0D 00/,X/-0.906007E-01,0.1201847,-2.100486,-0.3127066
    1/,Y,Z/11*0.0D 00/,NSIG,IN/4*0/
    END
    SUBROUTINE MODEL (F,G,H,N,P,R)
    ..... MODEL GENERATES X(K+l),Y(K) AND U(K) WHERE,.....
    ..... X(K+1) = FX(K) + GU(K) ......
    ..... Y(K) = HX(K) ........
    IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
    DIMENSION U(2),W(4),X(4),Y(3),Z(8),NSIG(2),IN(2)
    1,F(N,N),G(N,R),H(P,N)
    REAL*8 INPUT
    CDMMON /LCI/U,W,X,Y,Z,NSIG,IN/LC2/TT,K
    ..... GENERATE U(K) ......
    DO 10 J=1,R
    NSIGJ=NSIG(J)
    INJ = IN(J)
    U(J) = INPUT(TT,K,NSIGJ,INJ)
```

```
C
C
    CALL MATVEC(H,X,Y,P,N)
C ..... CALCULATE X(K+1)
    CALL MATVEC(F,X,Z,N,N)
    CALL MATVEC(G,U,W,N,R)
    CALL VECADO(Z,W,X,N,N)
    RETURN
    END
    REAL FUNCTION INPUT*8(TT,K,NSIGJ,INJ)
    ..... INPUT GENERATES THE FOLLOWING SYSTEM INPUTS; ......
C ..... UNIT STEP, UNIT RAMP, UNIT ACCELERATION, WHITE GAUSSIAN
C ..... NOISE N(O,I), STEP+NOISE, RAMP+NOISE, ACCELERATIGN+NOISE
    REAL*8 TT
    Y1=0.0
    GO TO (10,20,30,40),NSIGJ
    INPUT=1.0DO + Y1
    RETURN
    INPUT = TT + Y1
    RETURN
    INPUT = TT*TT + YI
    RETURN
40 CALL NOISE(Y1,INJ,&10,&20,&30)
    INPUT = Y1
    RETURN
    END
    SUBROUTINE NOISE(Y1,INJ,*,*,*)
    CALL GAUSS(X1,X2,0.0,0.0500,Y1,Y2)
    GO TO {1,2,3,4),INJ
    RETURN 1
    RETURN }
    RETURN 3
    RETURN
    END
    SURROUTINE GAUSS(X1,X2,MU,SIGMA,Y1,Y2)
C. GENERATE A PAIR OF RANDOM NUMBERS NORMALLY DISTRIBUTED
C ACCORDING TO N(MU,SIGMA)
    REAL MU
```

```
    DATA PHI/6.2834/
    CALL RANDOM(X1)
    CALL RANDOM(X2)
    Yl=SIGMA*SQRT(-2.0*ALOG(X1))*COS(PHI*X2) + MU
    Y2=SIGMA*SQRT(-2.8*ALOG(X1))*SIN(PHI*X2) + MU
    RETURN
    END
    SUBROUTINE RANDOM(Z)
C GENERATE A UNIFORM DISTRIBUTED RANDOM NUMBER U(0,1) BY THE
C MIXED MULTIPLICATIVE CONGRUENTIAL METNOD
    DATAI/1/
    INTEGER A,X
    IF(I.EQ.0) GO TO I
    I = 0
    M = 2**20
    FM = M
    X=566387
    A = 2**10 + 3
    X = MOD(A*X,M)
FX = X
Z = FX/FM
RETURN
END
REAL FUNCTION NU*8(SIGMAI,I)
REAL*4 SIGMA1(2)
SIGMA=SIGMA1(1)
CALL GAUSS(X1,X2,0.0,SIGMA,Y1,Y2)
NU=Y1
RETURN
END
REAL FUNCTION MU*8(SIGMA2,I)
REAL*4 SIGMA2(3)
SIGMA=SIGMA2(I)
CALL GAUSSIX1,X2,0.0,SIGMA,Y1,Y2)
MU=Y2
RETURN
END
```

```
SUBROUTINE MATFOR(A,B,M,N,P,O,L)
IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
DIMENSION A(L),B(M&N)
KK= O
DO 10 J=1,N
K=(J-1)*P
DO 10 I = 1,M
KK=K + I + O
C(I,J)=A(I,J)
DO 20 I=1,0
DO 20 J=1,N
II=M+I
C(II,J)=B(I,J)
RETURN
END
SUBROUTINE SMATRXIS,SS,N,PNSTAR,NRSTAR,PRSTARI
IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
DIMENSION S(N,PNSTAR),SS(NRSTAR,PRSTAR)
K=0
L=N + 1
OD 10 I=1,N
DO 10 J=1.PNSTAR
S(I,J)=0.000
IF(I.EQ.J) S(I,J) = 1.000
CONTINUE
DO 20 I=1,N
DO 20 J=1,PRSTAR
SS(I,J) = 0.0DO
IF(I.EQ.J) SS(I,J) = 1.ODO
```

CONT INUE
DO 30 I=L, NRSTAR
$K=K+1$
DO $30 \mathrm{~J}=1$, PRSTAR
SS(I,J) = O.ODO
IF(J.EQ.(PNSTAR + K)) SS(I,J) $=1.000$
CONTINUE
RETURN
END
SUBROUTINE MATFG\{A,B,C,D,F,G,FR,N,R,NRSTAR,RNSTARI
IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
DIMENSION $A(N, N), B(N, R), C(N, R), D(N, N), F(N, N), G(N, R), F R(N, N R S T A R)$
RADDI $=R+1$
DO $10 \quad \mathrm{I}=1, \mathrm{~N}$
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$F(I, J)=F R(I, J)$
CALL NATEQ(F,A,N,N)
DO $60 \mathrm{M}=1$, RNSTAR,R
$K=N+M$
$L=K-1+R$
$Q=0$
DO $20 \mathrm{~J}=\mathrm{K}, \mathrm{L}$
$Q=Q+1$
DO $20 \quad I=1, N$
$C(I, Q)=F R(I, J)$
IF(M-RADOI) 60,30,40
CALL MATMLT(F,C,B,N,N,R)
GO TO 50
CALL MATMLT(F, $A, D, N, N, N)$
CALL MATEQ(D,A,N,N)
CALL MATMLT (A, C, B, N, N, R)
CALL MATADD(G,B,C,N,R)
CALL MATEQ(C,G,N,R)
RETURN
END
SUBROUTINE SORTKY($Z, M, P)$
IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)

```
        DIMENSION Z(M)
        OO 10 l=1,P
        Z(I)=DFLOAT (M+I-PI
        PP=P+1
        DO 20 I=PP,M
    Z(I)=DFLOAT(I-P)
        RETURN
        END
        SUBROUTINE MATRX(A,B,C,T,UU,V,X,Y,Z,M,N,P)
    SUBROUTINES FOR MANIPULATIONS OF MATRICES AND VECTORS.
    IMPLICIT INTEGER*4(I-R),REAL*8(A-H,S-Z)
    DIMENSION A(M,N),B(M,N),C(M,N),T(M,P),UU(N,P),V(N,M),X(N),Y(N)
    1,Z(M),JORD(10),JCOL(10),IROW(10),YY(10)
    REAL*8 PIVOT
    RETURN
C
    #... T(M,P) = A(M,N)利U(N,P)
    ENTRY MATMLT(A,UU,T,M,N,P)
    DO 1 I=1,M
    DO 1 J=1,P
    T(1,J)=0.0
    DO 2 I=1,M
    DO 2 J=1,P
    DO 2 K=1.N
    T(I,J)=A(I,K)*UU(K,J) +T(I,J)
    RETURN
C
C \ldots..C(M,N) = A(M,N) + B(M,N)
    ENTRY MATADD {A,B,C,M,N}
    DO 3 I=1,M
    DO 3 J=1,N
    C(I;J) = A(I,J) + B(I,J)
    RETURN
C
\ldots...C(M,N) = A(M,N) - B(M,N)\ldots....
    ENTRY MATSUB {A,B,C,M,N|
    DO 4 I=1,M
```

```
    DO 4 J=1,N
4C(I,J)=A(I,J)-B(I,J)
    RETURN
C
C\ldots}\ldots.|(M)=A(M,N)\not=X(N)\ldots...
    ENTRY MATVEC (A,X,Z,M,N)
    DO 5 I =1,M
    Z(I) =0.0
    DO 6 I=1,M
    DO 6 J=1,N
    Z(I)=A(I,J)*X(J)+Z(I)
    RETURN
C
C .....Y(N)=S*X(N)
    ENTRY SCAVEC (S,X,Y,N)
    OO 7 I= I,N
    Y(I) = S*X(I)
    RETURN
C
C \ldots... B(M,N) = S*A(M,N) \ldots...
    ENTRY SCAMAT (S,A,B,M,N)
    DO 8 I= 1,M
    DO 8 J=1,N
8 B(I,J) = S*A(I,J)
    RETURN
C
C .....S = X(N) & Y(N) \ldots...
    ENTRY VECVEC {X,Y,S,N}
    S=0.0
    DO 9 I= 1,N
    S = S + XII)*Y\I)
    RETURN
C
C \ldots...X(N)=Z(M) & A(M,N) \ldots...
    ENTRY VECMAT(Z,A,X,M,N)
    OO 10 J =1,N
    X(J)}=0.
```

```
    00 10 K =1,M
    X(J) = X(J) + Z(K)*A(K,J)
    RETURN
\ldots... }B(M,N)=A(M,N)\ldots..
    ENTRY MATEQ (A,B,M,N)
    DO 11 I =1,M
    DO 11 J =1,N
    B(I,J) = A(I,J)
    RETURN
C ......VECTOR LENGTH S, OF X(N) .....
    ENTRY VECLEN (X,S,N)
    SUMSQX = 0.0
    DO 12 I =1,N
    SUMSQX = SUMSQX + X(I)*X(I)
    S = DSQRT(SUMSQX)
```

c
C
RETURN
C
$\ldots . . Y(N)=X(N) \ldots$.
ENTRY VECEQ (X, Y, N)
DO 13 I $=1, N$
$Y(I)=X(I)$
RETURN
C
$\ldots . . \operatorname{V}(N, M)=A(M, N)$ TRANSPOSED \ldots.
ENTRY TRNSPZ (A,V,M,N)
DC $14 \mathrm{I}=1, \mathrm{M}$
DO $14 \mathrm{~J}=1, \mathrm{~N}$
$V(J, I)=A(I, J)$
RETURN
C MATINV
C CALCOULATION OF AN INVERSE MATRIX IN PLACE. THIS SUBROUTINE READS
C
C
C
C
C
AND COMPUTES THE INVERSE OF A MATRIX 'A' IN PLACE. EPS IS THE
MINIMUM PIVOT MAGNITUDE PERMITTED BY MATINV. SHOULD NO ACCEPTABLE
PIVOT BE FOUND MATINV RETURNS A TRUE ZERO AS ITS VALUE FOR DETER.
DETER, THE DETERMINANT OF THE MATRIX OF COEFFICIENTS IS RETURNED

```
C AS THE VALUE OF mATINV AS WELL AS THE INVERSE.
    ENTRY MATINV(A,M,N,EPS,DETER)
C ..... BEGIN ELIMINATION PROCEDURE .....
    DETER = 1.0
    DO 22 K=1,N
    KM1 = K - l
    ..... SEARCH FOR THE PIVOT ELEMENT ......
    PIVOT = 0.0
    DO 18 I = 1,N
    DO 18 J =1,N
C ..... SCAN IROW AND JCOL ARRAYS FOR INVALID PIVOT .....
    IF(K.EQ.1) GO TO 17
    DO 16 ISCAN =1,KM1
    DO 16 JSCAN =1,KM1
    IF(I.EQ.IROW(ISCANI) GO TO 18
    IF(J.EQ.JCOL(JSCAN)) GO TO 18
    CONTINUE
17 IF(DABS(A(I,J)).LE.DABS(PIVOT)) GO TO 18
    PIVOT = A(I,J)
    IROW(K) = I
    JCOL(K)=J
    CONTINUE
    IF(DABS(PIVOT) .GT. EPS) GO TO 19
    WRITE{6,29)
    RETURN
C ..... UPOATE THE DETERMINANT VALUE .....
19 IROWK = IROW(K)
    JCOLK = JCOL(K)
    DETER = DETER*PIVOT
    ..... NORMALIZE THE PIVOT ROW ELEMENTS ......
    DO 20 J =1,N
20 A(IROWK,J) = A(IROWK,J)/PIVOT
C ..... CARRY OUT ELIMINATION & DEVELOP INVERSE .....
    A(IROWK,JCOLK) = 1.0/PIVOT
    DO 22 I=1,N
    AIJCK = A(I,JCOLK)
    IF(I.EQ.IROWK) GO TO 22
```

```
    A(I,JCOLK) = -AIJCK/PIVOT
    DO 21 JFl,N
    21 IF(J.NE.JCOLK) A(I,J) = A(I,J)-AIJCK*A(IROWK,J)
    CONTINUE
    ..... CREATE JORDAN ARRAY .....
    DO 23 I=1,N
    IROWI = IROW(I)
    JCOLI = JCOL (I)
    JORD(IROWI) = JCOLI
    ..... ADJUST SIGN OF DETERMINANT ......
    INTCH = O
    NMl = N-1
    DO 24 I=7,NMI
    IPI = I + I
    DO 24 J=IPl,N
    IF(JORD(J).GE.JORD(I)) GO TO 24
    JTEMP = JORD(J)
    JORD(J) =JORD(I)
    JORD(I) = JTEMP
    INTCH = INTCH + 1
IINTCNSCRAMBLE THE INVERSE .....
    ..... UNSCRAMBLE THE INVERSE ......
    DO 26 J=1,N
    DO 25 I=1,N
    IROWI=IROW(I)
    JCOLI=JCOL(I)
    YY(JCOLI)=A(IROWI,J)
    DO 26 I= I,N
26 A(I,J) = YY(I)
C ..... THEN BY COLUMNS ......
    OO 28 I=1,N
    OO 27 J=1,N
    IROWJ=IROW(J)
    JCOLJ=JCOL(J)
27 YY(IROWJ) = A(I,JCOLJ)
    DO 28 J=1,N
```

```
    A(I,J) = YY(J)
    FORMAT('0 ***** THE MATRIX IS SINGULAR ***** ')
    RETURN
    ..... Z(I) = X(I) + Y(I) ......
    ENTRY VECADD(X,Y,Z,N,M)
    DO 30 I=1,N
    Z(I) = X(I) + Y(I)
    RETURN
    ..... RSORT ......
    ...... RSORT EXCHANGES THE ROWS OF MATRIX A(M,N) FORMING MATRIX
    B(M,N) OCCURING TO THE SORTING KEY SPECIFIED IN Z(M). THE SORT
    KEY PLACES ROW 'I' IN A IN THE CORRESPONDING ROW POSITION
    SPECIFIED IN Z('I'). NUMBERS IN THE SORT KEY MUST RANGE
    FROM 1 TO M.
    ENTRY RSORT(A,Z,B,M,N)
    DO 31 K=1,M
    I = IDINT(Z(K))
    DO 31 J = 1,N
    B(I,J) = A(K,J)
    RETURN
    ..... CSORT ......
    CSORT EXCHANGES THE COLUMNS OF MATRIX A(M,N) FORMING MATRIX
    B(M,N) ACCORDING TO THE SORTING KEY SPECIFIED IN Y(N),THE SORT
    key places column 'I' IN a IN the CORRESPONDING COLUMN POSITION
    SPECIFIED IN Y('I'). NUMBERS IN Y(N) MUST RANGE FROM I TO N.
    ENTRY CSORT(A,Y,B,M,N)
    DO 32 K=1,N
    J=IDINT(Y(K))
    DO 32 I=1,M
32 B(I,J)=A(I,K)
    RETURN
C ......EXCGL .....
C EXCOL REPLACES GOLUMN Q IN THE MATRIX A(M,N) WITH THE VALUES
C IN Z(M). Q ANY INTEGER FROM I TO N
    ENTRY EXCOL(A,Z,Q,M,N)
```

C
C

DO $33 \mathrm{I}=1, \mathrm{M}$

$A(I, Q)=Z(I)$

RETURN
END

